
Wrapping CALE Commands using SWIG

CALE is a 2D ALE hydrodynamics computer program written in ANSI C. While CALE is portable in various platforms, we want to
increase CALE’s usability by making CALE available in popular programming languages, such as Python. Our goal is to build a

Python front-end for CALE using SWIG. In this poster, we show our investigation on SWIG’s capability on wrapping CALE
commands, illustrate our preliminary results on wrapping several CALE commands, and finally discuss our future plan.

Nija Shi, University of California, Davis
AX Division, Paul Amala and Rob Managan
Lawrence Livermore National Laboratory

• CALE (C Arbitrary Lagrangian Eulerian) is a user-interactive 2D
ALE hydrodynamics computer program written in the ANSI C.

• CALE is also itself a command language recognized by its
embedded interpreter.

Future Plan
We want to automate this process using source code analysis,
such as data-flow, control-flow, and interprocedual analyses.

UCRL-POST-214141 This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Introduction
• SWIG (Simple Wrapper and Interface Generator)

SWIGSWIGpycale.i
SWIG

pycale_wrap.c

pycale.ipycale.ipycale.ipycale.i
CALE

Source
code

PyCALE module

CALE
deckCALE

Discussion
• Minimal modification of the original CALE source code
• Pythonize CALE’s original syntax in the new PyCALE module

Goals

pycale.rdmp(), pycale.fm()
pycale.tv(600, 600)
pycale.winp(-5,5,0,.1)
pycale.pltstep(10,1)
pycale.plm()/pycale.plmoff()
pycale.plc(“den”)
pycale.gamma[‘GAMMA’].val
pycale.cvar.kmax

rdmp, fm
tv 600 600
winp -5 5 0 .1
pltstep 10 1
plm/plmoff
plc den
{GAMMA}
kmax

PyCALECALE

• Problem: CALE commands are processed through its
embedded interpreter. Multiple commands can be mapped to
the same embedded function by passing different arguments.
Most embedded functions require information from standard
input.

• Solution: To retain the original look-and-feel, we use various
SWIG directives and redirect parameters passed from PyCALE
to the standard input for CALE.

libcale.amake run setup.py

