
Analyses tools for large program codes

Analyzing large programs is a “necessary evil”, a step towards understanding, reengineering, debugging and maintaining them. A whole program
analysis encounters several difficulties, some of them addressed in this research. We present a set of tools meant to aid the development of code

analysis for large programs. We have created a persistency infrastructure, which can be used to save the results of intermediate code analysis and
perform them in an incremental manner. We have designed and implemented a multi-file call graph analysis and are working on developing an

interprocedural control flow analysis, using the database support mechanism. Visualizing the result of our analysis for large codes is a task in itself, dealt
with by converting the output of the analysis to a GML graph representation which can be interpreted by existing visualization tools.

Radu Popovici, Cornell University,
CASC, Dan Quinlan,

Lawrence Livermore National Laboratory,

ResultsResults
3. Visualization3. Visualization

Visualization of large graphs is a goal with many useful applications. It provides an
intuitive overview of large programs, modularization, and a basis for clustering.
Visualization of call graphs allows better defining of modules and interfaces between
them. For the purpose of visualizing large call graphs, we intend to use VizzAnalyzer.
The advantage is that VizzAnalyzer is capable of rendering very large graphs, as
opposed to the traditional dot tool.
To this end, we implemented a conversion mechanism from the DOT format which was
previously used to output results to the GML format.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Problems addressedProblems addressed
1. Persistency1. Persistency

Multi-file programs of large size (hundreds of thousands to millions of lines of code)
present a multitude of difficulties for code analysis. Cross file references need to be
solved and results made persistent, allowing for the possibility of adding files at a later
stage. To this end, we have developed a generic database support for various analysis.
• API for interfacing SQLite with Rose
• storing / retrieving results of analyses
• incremental usage of analyses
• future projects concern the automatization of storage/retrieval from/to Sage IR.

ROSE
Infrastructure

Other
analysis

Database
support

Control
flow

analysis

Call Graph
Analysis

Visualization
tools

DOT, GML

Parsing tools

System System
ArchitectureArchitecture

void foo1();
class A {
public:

virtual bool (A::*f1(char c))(int) = 0;
virtual bool f2(int) = 0;
virtual bool f3(int) {}

};

class B : public A {
public:

virtual bool (A::*f1(char c))(int) {
return &A::f2;

}
virtual bool f2 (int i);
virtual bool f3 (int);
virtual bool f4 (bool) {}
void f5() {

(this->*f1('c'))(2);
}

};

bool B::f2(int i) { return f4(f3(i)); }
bool B::f3(int i) { return 1; }

void k(A *ap) {
bool (A::*(A::*ff)(char))(int);
bool (A::*pf)(int);
ff = &A::f1;
pf = &A::f2;
(ap->*pf)(1);
(ap->*(ap->*ff)('a'))(2);
foo1();

}

void foo1() {
B b;
foo1();
k(&b);

}

int main() {
B b;
k(&b);

}

2. Call Graph Analysis2. Call Graph Analysis
Call graph analysis is important in the context of understanding the overall organization of a
program, as well as providing a basis for the development of all other interprocedural analyses,
such as control flow, data flow, slicing etc. We have dealt with building call graphs for large
programs in a comprehensive way with respect to the language C/C++.
• loading and compiling the input files incrementally – achieved via the persistent storage support
• solving certain types of function calls:

•function pointers
•member function pointers
•polymorphic function calls

This was done using a conservative approach, based on the type (return type, parameter type) of
these functions, and the class hierarchy.

A preliminary version was run on the A++Code
program (29 files). We are in the process of
moving to a more stable version, which will be
tested against large codes.

UCRL

