
Porting DPCL, DynInst and PAPI to Blue Gene/L
Steven Ko, University of Illinois; Gregory Lee, University of California, San Diego;

Michael Noeth, North Carolina State University; Barry Rountree, University of Georgia.
CAR-ISCR, Dong Ahn, Bronis de Supinski, Martin Schulz.

Lawrence Livermore National Laboratory.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Blue Gene/L Architecture

MRNet

Dynamic Probe Class Library

PAPIDynInst

DPCL on BG/L

Figure 5: A typical parallel tool Figure 5: A typical parallel tool
architecturearchitecture

Figure 6: A parallel Figure 6: A parallel
tool built with MRNet.tool built with MRNet.

A typical tool architecture can be seen in Figure 5. It is clear that for a large number of back-A typical tool architecture can be seen in Figure 5. It is clear that for a large number of back-
end nodes, the tool's front-end will become a bottleneck. To alleviate this problem, the end nodes, the tool's front-end will become a bottleneck. To alleviate this problem, the
Multicast Reduction Network (MRNet) creates a tree of processes between the tool's front-Multicast Reduction Network (MRNet) creates a tree of processes between the tool's front-
end and back-ends as seen in Figure 6. The internal processes help distribute the tool's end and back-ends as seen in Figure 6. The internal processes help distribute the tool's
communication and can also perform data reductions (i.e. sum, min, max). Communication communication and can also perform data reductions (i.e. sum, min, max). Communication
costs are also reduced using MPI-like communicators for efficient multicast and broadcast costs are also reduced using MPI-like communicators for efficient multicast and broadcast
communication.communication.

Dynamic Probe Class Library (DPCL) is an application program interface (API) for installing Dynamic Probe Class Library (DPCL) is an application program interface (API) for installing
instrumentation into and removing instrumentation from a serial or parallel program as the instrumentation into and removing instrumentation from a serial or parallel program as the
program is running. DPCL is built on top of DynInst, a dynamic instrumentation library, and program is running. DPCL is built on top of DynInst, a dynamic instrumentation library, and
provides extended functionalities, including the support of C-style code snippets (probes) provides extended functionalities, including the support of C-style code snippets (probes)
and the ability to instrument multiple heterogeneous processes.and the ability to instrument multiple heterogeneous processes.

Figure 4: Figure 4:
Structure Structure
of DPCLof DPCL

PAPI (Performance Application PAPI (Performance Application
Program Interface) provides the tool Program Interface) provides the tool
designer and application engineer designer and application engineer
with a consistent interface and with a consistent interface and
methodology for use of the methodology for use of the
performance counter hardware found performance counter hardware found
in most major microprocessors. PAPI in most major microprocessors. PAPI
enables software engineers to see, in enables software engineers to see, in
near real time, the relation between near real time, the relation between
software performance and processor software performance and processor
events. PAPI on BG/L will be built events. PAPI on BG/L will be built
using BG/L's perfctr API. using BG/L's perfctr API.

A single DPCL-aware A single DPCL-aware
application can control each application can control each
of the tens or hundreds of of the tens or hundreds of
thousands of processes thousands of processes
executing on a BG/L. The executing on a BG/L. The
Front-end Node packs DPCL Front-end Node packs DPCL
commands into a message commands into a message
and sends them to the I/O and sends them to the I/O
Nodes. Each I/O node runs Nodes. Each I/O node runs
a single debugger which a single debugger which
unpacks the messages and unpacks the messages and
issues commands to the issues commands to the
Compute Nodes using Compute Nodes using
DynInst. Finally, data DynInst. Finally, data
generated by the Compute generated by the Compute
Nodes is routed back Nodes is routed back
through MRNet, undergoing through MRNet, undergoing
optional data reductions or optional data reductions or
aggregations before reach-aggregations before reach-
ing the application. ing the application.

Figure 3: Architecture of DPCL on BG/LFigure 3: Architecture of DPCL on BG/L

The DynInst (Dynamic Instrumentation) The DynInst (Dynamic Instrumentation)
library allows the user to dynamically library allows the user to dynamically
instrument code into a running instrument code into a running
application. This is done by creating a application. This is done by creating a
trampoline at the desired location in the trampoline at the desired location in the
code. The given instruction (usually a code. The given instruction (usually a
function call) is replaced with a jump. function call) is replaced with a jump.
The target of that jump contains code The target of that jump contains code
that saves the registers, executes the that saves the registers, executes the
new snippet, restores the registers, new snippet, restores the registers,
executes the original instruction that executes the original instruction that
had been replaced, and returns the had been replaced, and returns the
control flow of the program back to its control flow of the program back to its
expected location. expected location.

Figure 7: DynInst Trampoline CodeFigure 7: DynInst Trampoline Code

Figure 1: Architecture of BG/LFigure 1: Architecture of BG/L

Figure 2: BG/L I/O Node and Figure 2: BG/L I/O Node and
Compute Node heirarchyCompute Node heirarchy

The architecture of Blue Gene/L uses The architecture of Blue Gene/L uses
tens of thousands of inexpensive, low-tens of thousands of inexpensive, low-
power, commodity processors harnessed power, commodity processors harnessed
together to solve problems in fields as together to solve problems in fields as
diverse as weapons modeling and diverse as weapons modeling and
computational biology. BG/L has 65,536 computational biology. BG/L has 65,536
compute nodes, each node consisting of compute nodes, each node consisting of
two processors for a theoretical peak two processors for a theoretical peak
performance over 360 teraflops. The performance over 360 teraflops. The
nodes are connected by both a 3D torus nodes are connected by both a 3D torus
network and a combining tree network. network and a combining tree network.
The compute nodes do not support full The compute nodes do not support full
operating systems, rather they run light-operating systems, rather they run light-
weight custom kernels. They also rely weight custom kernels. They also rely
on the I/O nodes for input and output on the I/O nodes for input and output
operations. In the LLNL configuration, operations. In the LLNL configuration,
each I/O node handles 64 compute each I/O node handles 64 compute
nodes.nodes.

Figure 8: PAPI software heirarchyFigure 8: PAPI software heirarchy

UCRL-POST-214241

