
Adding Cray Pointers to GNU Fortran

Cray pointers are a non-standard Fortran extension invented at the Laboratory. This poster describes adding Cray pointer support to the gfortran compiler.

Asher Langton, University of Wisconsin
AX Division, Mike Kumbera

Lawrence Livermore National Laboratory

What are Cray Pointers?What are Cray Pointers?
In computer programming languages, a In computer programming languages, a pointerpointer is a type of variable that stores a memory address. is a type of variable that stores a memory address.

In the C programming language, we might have the following code:In the C programming language, we might have the following code:

float var; float var; <<---- states that the variable states that the variable varvar will hold a real valuewill hold a real value
float *ptr; float *ptr; <<---- states that states that ptrptr will hold the address of a real variablewill hold the address of a real variable
ptr = &var;ptr = &var; <<---- takes the address of takes the address of varvar and assigns it to and assigns it to ptrptr

*ptr = 1.0; *ptr = 1.0; <<---- assigns 1 to the variable at the address stored in assigns 1 to the variable at the address stored in ptrptr

The Cray pointer extension adds a CThe Cray pointer extension adds a C--like pointer to the Fortran language through the use of two like pointer to the Fortran language through the use of two
features: the features: the pointerpointer statement and the statement and the locloc intrinsic function. The pointer statement has the form:intrinsic function. The pointer statement has the form:

pointer (pointer (<pointer><pointer> , , <pointee> <pointee>))
This declares to the compiler that the pointee will be an alias This declares to the compiler that the pointee will be an alias for a memory location, the address of for a memory location, the address of
which will be stored in the pointer variable. The compiler doeswhich will be stored in the pointer variable. The compiler does not allocate any space for pointee; it is not allocate any space for pointee; it is
the responsibility of the programmer to ensure that address heldthe responsibility of the programmer to ensure that address held in the pointer is valid, either by calling a in the pointer is valid, either by calling a
mallocmalloc--type routine, or by setting the pointer to the address of an exitype routine, or by setting the pointer to the address of an existing block of data. The loc intrinsic sting block of data. The loc intrinsic
function is provided for this purpose; it takes a variable as anfunction is provided for this purpose; it takes a variable as an argument and returns that variable’s argument and returns that variable’s
memory address as its result, just like the ‘&’ operator does inmemory address as its result, just like the ‘&’ operator does in C. Using Cray pointers, we can translate C. Using Cray pointers, we can translate
the above code snippet to Fortran:the above code snippet to Fortran:

realreal varvar
integer ptrinteger ptr
real pointeereal pointee

pointer (ptr, pointee)pointer (ptr, pointee)
ptr = loc(var)ptr = loc(var)
pointee = 1.0pointee = 1.0

Implementation Details and StatusImplementation Details and Status
As of GCC 4.0, GNU Compiler front ends compile to an intermediatAs of GCC 4.0, GNU Compiler front ends compile to an intermediate treee tree--based language called based language called

GENERIC. This separates the front end GENERIC. This separates the front end ---- which reads in and decodes a high level language which reads in and decodes a high level language ---- from the from the
back end back end ---- which produces architecturewhich produces architecture--specific machine instructions.specific machine instructions.

The Cray pointer extension is exclusively contained in the gfortThe Cray pointer extension is exclusively contained in the gfortran front end, and comprises fewer ran front end, and comprises fewer
than 500 lines of C source code. The existing symbol table, witthan 500 lines of C source code. The existing symbol table, with minor modifications, is used to keep h minor modifications, is used to keep
track of pointertrack of pointer--pointee relationships. Any expression involving a pointee is trpointee relationships. Any expression involving a pointee is translated into GENERIC as anslated into GENERIC as
an expression involving the pointer instead. As a result, the pan expression involving the pointer instead. As a result, the pointees disappear from the code at the ointees disappear from the code at the
GENERIC level. The GENERIC language has a CGENERIC level. The GENERIC language has a C--like structure, so it is not difficult to create like structure, so it is not difficult to create
expressions that directly reference memory addresses.expressions that directly reference memory addresses.

At run time, there is no additional overhead used by Cray pointeAt run time, there is no additional overhead used by Cray pointers. Each pointer uses only the rs. Each pointer uses only the
number of bits necessary to hold a memory address (typically 4 onumber of bits necessary to hold a memory address (typically 4 or 8 bytes on current machines). In r 8 bytes on current machines). In
contrast, on the 32contrast, on the 32--bit compilers available at the Laboratory, Fortran 90 pointers ubit compilers available at the Laboratory, Fortran 90 pointers use up to 72 bytes of se up to 72 bytes of
memory each memory each ------ 18 times the size of a Cray pointer!18 times the size of a Cray pointer!

With the Cray pointer extension, gfortran correctly compiles botWith the Cray pointer extension, gfortran correctly compiles both automated test suites and existing h automated test suites and existing
lab Fortran codes. The Cray pointer patch was released to the plab Fortran codes. The Cray pointer patch was released to the public on July 29th, and we expect that it ublic on July 29th, and we expect that it
will be included in future distributions of GCC.will be included in future distributions of GCC.

Why gfortran?Why gfortran?
The GNU Compiler Collection (GCC) is a free, openThe GNU Compiler Collection (GCC) is a free, open--source suite of compilers maintained by source suite of compilers maintained by

volunteers, with contributions from companies such as IBM, Hewlevolunteers, with contributions from companies such as IBM, Hewletttt--Packard, and Red Hat Linux, as Packard, and Red Hat Linux, as
well as many government and academic institutions. GCC compileswell as many government and academic institutions. GCC compiles C, C++, Objective C, Fortran, Java, C, C++, Objective C, Fortran, Java,
and Ada, generates code for dozens of processor types, and is deand Ada, generates code for dozens of processor types, and is designed to be easily ported to new signed to be easily ported to new
systems. gfortran is a relatively new systems. gfortran is a relatively new ““front endfront end”” to GCC that supports most standard Fortran features, to GCC that supports most standard Fortran features,
but which did not previously support Cray pointers. With this ebut which did not previously support Cray pointers. With this extension, the Laboratory can compile xtension, the Laboratory can compile
legacy programs on almost any modern computer platform, without legacy programs on almost any modern computer platform, without being dependent on a commercial being dependent on a commercial
compiler vendor. compiler vendor.

By releasing the Cray pointer extension as openBy releasing the Cray pointer extension as open--source software, the Laboratory is freed from the source software, the Laboratory is freed from the
burden of maintaining its own version of gfortran. Furthermore,burden of maintaining its own version of gfortran. Furthermore, this new extension will likely increase this new extension will likely increase
the number of users of the number of users of ---- and contributors to and contributors to ---- gfortran, which will in turn speed development and result gfortran, which will in turn speed development and result
in a more mature compiler for use at the Laboratory. in a more mature compiler for use at the Laboratory.

UCRL-POST-214074This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Some HistorySome History
Cray pointers were invented at the Laboratory and introduced intCray pointers were invented at the Laboratory and introduced into the o the

FortranFortran--based LRLTRAN (Lawrence Radiation Laboratory TRANslator) based LRLTRAN (Lawrence Radiation Laboratory TRANslator)
language. The loc intrinsic function had become part of the LRLlanguage. The loc intrinsic function had become part of the LRLTRAN TRAN
language by 1968 and was in use on the Control Data Corporation language by 1968 and was in use on the Control Data Corporation (CDC) (CDC)
6600 computer at the Laboratory. Integer pointers were introduc6600 computer at the Laboratory. Integer pointers were introduced to ed to
LRLTRAN around the time that the Laboratory acquired the SeymourLRLTRAN around the time that the Laboratory acquired the Seymour CrayCray--
designed CDC 7600. Seymour Cray went on to found Cray Research,designed CDC 7600. Seymour Cray went on to found Cray Research, whose whose
Cray Vector Compiler supported integer pointers as a Fortran extCray Vector Compiler supported integer pointers as a Fortran extension, and ension, and
the LRLTRAN pointers became known as “Cray pointers”.the LRLTRAN pointers became known as “Cray pointers”.

The Fortran 90 standard provided the first official support for The Fortran 90 standard provided the first official support for pointers in pointers in
Fortran. However, these Fortran 90 pointers are not like C poinFortran. However, these Fortran 90 pointers are not like C pointers; they allow ters; they allow
variable aliasing, but do not allow direct access to memory. Invariable aliasing, but do not allow direct access to memory. In addition, addition,
Fortran 90 pointers must store additional metadata, and thus reqFortran 90 pointers must store additional metadata, and thus require more uire more
space than Cray pointers.space than Cray pointers.

LLNL’s original CDC 7600

ReferencesReferences
•• CDC 7600, Wikipedia: The Free Encyclopedia (11 July 2005), CDC 7600, Wikipedia: The Free Encyclopedia (11 July 2005), http://en.wikipedia.org/wiki/CDC_7600.
•• CIVIC Manual, June 1982.CIVIC Manual, June 1982.
•• Dubois, P. F. Fortran: A Space Odyssey. IEEE MultiMedia 3, 2 (Mar. 1996), 54-59.
•• GCC Wiki, GCC Wiki, http://gcc.gnu.org/wiki.http://gcc.gnu.org/wiki.
• Martin, J. Fortran 90 pointers vs. “Cray” pointers. SIGPLAN Fortran Forum 11, 2 (Jun. 1992), 17-23.
• Mendicino, S. F., et al. The LRLTRAN compiler. Commun. ACM 11, 11 (Nov. 1968), 747-755.

