
Mark Gates, University of Illinois, Urbana-Champaign

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Clipart ©2003 www.barrysclipart.com

User-friendly Python Interface to ODE Solvers

AbstractAbstract

● Make user-friendly interface
● High performance, required for 2D and 3D problems
● Use existing, robust solvers
● Flexibility to write ODE function in Fortran, C, or Python

Why wrap Fortran and C libraries?Why wrap Fortran and C libraries?

Why Python?Why Python?
● Clean, object oriented syntax
● Interactive
● Easy to link with Fortran and C
● Interface with Matlab

Interface ComparisonInterface Comparison
Python FortranTraditional Fortran libraries for ODE solvers are cumbersome to use due to numerous

inputs and outputs. We wrote a simple, common interface in Python for existing ODE
solvers. Options are given sensible defaults, which can be overridden when required.
By establishing a common interface, a user can easily try different solvers without
having to learn extensively about each solver.

Steven Lee and Pat Miller, CASC, Lawrence Livermore National Laboratory

from lsode import lsode
import myode

t0 = 0.
tf = 0.7
y0 = initial_condition(t0)

try:
 solver = lsode(myode.f, y0, t0)
 solver.rel_tol = 1e-2
 solver.set_jacobian_bandwidth(361, 361)
 y = solver.integrate(tf)

 print "Steps” , solver.num_steps
 print "F eval", solver.function_evals

except Exception, e:
 print e

integer neq, lrw, liw
parameter (neq=6859, liw=6879, lrw=7496909)
integer istate, itask, itol, iopt, mf, iwork(liw)
double precision atol, rtol, t0, tf, rwork(lrw), y(neq)

itol = 1
rtol = 1.0d-2
atol = 1.0d-2
iopt = 0
mf = 25
itask = 1
istate = 1
iwork(1) = 361
iwork(2) = 361

t0 = 0.0
tf = 0.7
call initialcondition(neq, t0, y)

call dlsode(f, neq, y, t0, tf, itol, rtol, atol,
 itask, istate, iopt, rwork, lrw, iwork, liw, jac, mf)

if (istate .lt. 0) then
 write(6,*) 'Failed istate=', istate
else
 write (6,*) 'Steps ', iwork(11)
 write (6,*) 'F evals', iwork(12)
endif

Fortran or C
ODE Solver

lsode

Fortran or C
ODE Function

myode.f

Python

lsode(“myode.f”)

call

call

compile

The Python interface is implemented as a two-level class hierarchy:
odebase - Defines common interface for all ODE solvers.

lsode - Implements interface to LSODE,
the Livermore Solver for ODEs, developed at LLNL in the 1980's.

rkc - Implements interface to RKC,
an explicit Runge-Kutta-Chebyshev solver for mildly stiff ODEs.

ODE Solver InterfaceODE Solver Interface

Errors Raises exceptions Explicitly check for errors
Memory Automatically allocated Size based on problem and method
Options Defaults; can override Specify many options
Interface Standardized Solver-specific; cryptic

● On-the-fly compilation of ODE functions in Fortran and C
● Easily change solvers by changing solver class
● Flexibility to add solver-specific options when required
● Include additional solvers alongside LSODE and RKC Solution of 2D Brusselator equation at times t=1.1 to 1.5

Spatially discretized to yield an ODE system with 32,768 equations

graph solution using Matlab
import pymat.pyplot as pyplot
pyplot.surf(reshape(y, (128,128)))

UCRL-POST-214108

