
Numerical Results: Anisotropic 9-pt FE… coarse grids 
reflect smoother used in CR

Pointwise Gauss-Seidel CR (ρcr = 0.19) vs. Line Jacobi CR (ρcr = 0.45)
Not possible with standard definitions of strength of connection!

Theory
• Consider solving  Au = f , A SPD

• Consider smoothers with error propagation

• Denote the symmetrized smoother operator by

• Theorem: two-grid convergence

• Define R so that it does not depend on interpolation P
Defines the coarse-grid variables, uc = Ru
Example: R=[ 0, I ]  (PT=[ WT, I ]T), i.e., subset of the fine grid

• Theorem: splits coarse-grid correction into two parts
(1)   Small K insures coarse grid quality – use CR
(2)  Small η insures interpolation quality – necessary; does not depend on relaxation!

• We defined several general CR methods and showed that 
fast convergence implies a good coarse grid
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Introduction: multigrid methods use coarse grids to 
efficiently damp out smooth error

Algebraic Multigrid (AMG) methods are based on the 
underlying matrix, and little else

• AMG is applicable to unstructured-grid problems
• Characterizing algebraically smooth error (error not damped by 

relaxation) is crucial for designing robust AMG methods
• Algebraically smooth error need not be geometrically smooth!

Application I: AMG for Quantum Chromodynamics
(QCD)

• Lowest eigenmode of H*H

• Challenges:
Problem becomes nearly singular
H has multiple (locally distinct) near nullspace components
These components are unknown and oscillatory!

smoothing

Finest Grid

First Coarse Grid

restriction: transfer from 
fine to coarse grid

prolongation: transfer from 
coarse to fine grid

The Multigrid
V-cycle

smaller grid
(less work and storage)

recursively apply this idea until we have an 
easy problem to solve

Real part

β = 6 on 16 x 16 lattice

Imaginary part

Method: Adaptive Smoothed Aggregation (αSA)

• Points are aggregated
• A tentative prolongator is constructed from aggregates and 

local basis functions
• Tentative prolongation is defined by “chopping up” the 

representatives
Local QR factorization is used to orthonormalize
Can have arbitrary numbers of DOFs per aggregate

=

β / m g 0.001 0.01 0.05 0.1 0.3
2  .37 / .99   .33 /.99  .31 /.96  .31 /.94  .31 /.85
3  .50 / .99  .42 /.98  .42 /.97   .40 /.93  .31 /.86
5  .38 / .99   .31 /.99  .31 /.96  .29 /.92  .28 /.83

αAMG-PCG / CG,  n = 16384,  L = 3,  r = 8

n / m g 0.001 0.01 0.05 0.1 0.3
4096 0.32 0.29 0.27 0.26 0.27
16384 0.50 0.42 0.42 0.40 0.31
65536 0.48 0.37 0.36 0.36 0.30

αAMG-PCG, β = 3, r = 8;   mg = ρ - ρcrit

Numerical Results: αSA and QCD

• 2D Hermitian Dirac-Wilson Formulation
Solve the 2 x 2 equivalent real system
Software SAMIS.dat(amg) (M. Brezina), GS smoother and V(2,2) cycles

Abstract: We present two recent multigrid advances.  First, we 
provide promising numerical results for the application of adaptive 
algebraic multigrid to linear systems with oscillatory low-energy 
modes.  Second we introduce the idea of compatible relaxation as
a main tool in selecting the coarse degrees of freedom.

Method: Selecting Coarse Grids via CR

Step 1: Run CR; check convergence Step 2: Ind. Set

Step 3: Run CR; check convergence Step 4: Final C-pts

• Main idea: uncover the slowly-converging error components by 
applying the “current method” to the system Ax = 0 and use them to adapt 
(improve) the method

Application II: AMG coarsening via compatible relaxation
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