
SPEAR - A Fully Automated Python Wrapping Generator for C/C++ Code

EXISTING TECHNOLOGIES METHODS:
Wrapper Description Languages 

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

Lisa M. Alano, University of Chicago, 
Center for Applied Scientific Computing, Patrick J. Miller,

Lawrence Livermore National Laboratory

Language Extension

DISADVANTAGES of SWIG:

• Extra creation of format specific 
header files or hand-written
wrapper codes

• Addition of inefficient  shadow 
class layer – number of internal 
function calls increases quickly

• Use of  expression-based 
approximation without true semantic 
information for wrapper code

• Files created: 
example.py, example_wrap.c   
example_wrap.doc, _example.so

CURRENT APPROACH  WITH SPEAR:

SPEAR is a development tool that accepts C/C++ code and auto-generates Python bindings. Users will have easy access to 
the Python interface, which is a rich and flexible venue for prototyping and testing. Also, SPEAR can help combine disjoint 
code by creating corresponding modules and allowing them to interact as a newly integrated system.

SWIG

DISADVANTAGES of 
BOOST.PYTHON:

• Expression templates such as
BPL constructs  are used to
extend classes

• Creation of bloated code and 
large symbol tables

• Horrible compilation speeds
“…patience…” compile messages

• Difficult linkage of files

While ROSE parses and builds the 
code AST, it exposes all the code 
information required to generate an 
efficiently thin layer of binding code 
for an equivalent Python module.

SS implified

PP ython

EE xtension

AA ided by

RR ose

SPEAR:  

a ROSE-based 
Tool

Users write their usual C code and 
need not worry about writing their 
code in a special manner nor 
generating extra declaration files. All 
types & function declarations, structs, 
aliases, and type & function scopes 
are all visible to SPEAR without user 
intervention.

This project is at its early stages of development, whose short-term goal is to successfully auto-
generate Python modules from supplied C code. It is expected that the SPEAR code will run faster than the 
mentioned approaches because of its sheer simplicity in code creation. This is also helpful for the user who 
wants to look inside the generated wrappers, which should be relatively easy to understand.

Much work has been spent on dealing with memory allocation and assumed context, in order to 
accommodate for implied references that complicate object creation and destruction. Reference counting is 
employed and the basic C types are internally converted to appropriate SPEAR types, the basis for future 
user-defined types.

example.c

example.i

example.cpp

Jamfile

BOOST.PYTHON

complicated 
compile

DISTUTILS

READY TO USE 
PYTHON MODULE

SPEAR avoids the problems of current technologies by acquiring the extra information needed to create 
Python bindings from the ROSE compiler. The programmer does not need to generate extra files and there is 
no inefficient wrapper code creation. On the contrary, SPEAR wrapper codes are efficient & compact, making  
compilation and linkage quick and simple.

example.c

Example_wrap.c

PRESENT IMPLEMENTATION

INPUT FILES

INPUT FILES


	SPEAR - A Fully Automated Python Wrapping Generator for C/C++ Code

