I@ SPEAR - A Fully Automated Python Wrapping Generator for C/C++ Code

Lisa M. Alano, University of Chicago,
Center for Applied Scientific Computing, Patrick J. Miller,

Lawrence Livermore National Laboratory

> EXISTING TECHNOLOGIES METHODS:
. Wrapper Description Languages

DISADVANTAGES of SWIG:

« Extra creation of format specific
header files or hand-written
wrapper codes

< Addition of inefficient shadow
class layer — number of internal

= function calls increases quickly
example.c « Use of expression-based
approximation without true semantic
information for wrapper code
« Files created:
example.py, example_wrap.c
example_wrap.doc, _example.so

example.i

. Language Extension

DISADVANTAGES of
BOOST.PYTHON:

« Expression templates such as
BPL constructs are used to
extend classes

 Creation of bloated code and

large symbol tables
« Horrible compilation speeds
“...patience...” compile messages
« Difficult linkage of files

complicated
compile

> CURRENT APPROACH WITH SPEAR:

S implified
P ython

E xtension
A ided by

R ose

SPEAR avoids the problems of current technologies by acquiring the extra information needed to create
Python bindings from the ROSE compiler. The programmer does not need to generate extra files and there is
no inefficient wrapper code creation. On the contrary, SPEAR wrapper codes are efficient & compact, making

compilation and linkage quick and simple.

example.c

Users write their usual C code and
need not worry about writing their
code in a special manner nor
generating extra declaration files. All
types & function declarations, structs,
aliases, and type & function scopes
are all visible to SPEAR without user
intervention.

> PRESENT IMPLEMENTATION

While ROSE parses and builds the
code AST, it exposes all the code
information required to generate an
efficiently thin layer of binding code
for an equivalent Python module.

— [

READY TO USE
PYTHON MODULE



	SPEAR - A Fully Automated Python Wrapping Generator for C/C++ Code

