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1 Introduction

The work described in this report was performed by Tom Yu Ouyang during his summer 2007

internship at the Lawrence Livermore National Laboratory (LLNL). Tom was a summer student at

the Institute for Scientific Computing Research (ISCR) at LLNL, as a Department of Homeland

Security (DHS) Graduate Research Fellow, working under the supervision of Dr. Tina Eliassi-Rad.

The internship lasted 10 weeks, and satisfied his summer internship requirement for the 2006 DHS

Fellowship.

This report will address the following four topics: 1) the internship project and the student’s

role in the work, 2) the achievements made during the internship, 3) how the internship experience

impacted the student’s academic and career planning, and 4) areas of research that would help

DHS accomplish its mission and goals.
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Figure 1: The Enron email communication graph. Nodes and links represent individuals and email
communications, respectively. Darker edges indicate more recent links.

2 Link Prediction in Communication Networks

An enormous amount of communication data is accumulated every day in the form of email mes-

sages (e.g., see Figure 1), telephone communications, and online social interactions. The ability

to monitor and predict future interactions in such relational data (often represented as networks)

can be an essential tool in improving national security. For example, it may be useful for law

enforcement to determine with whom a suspected terrorist will communicate in the near future, or

to model the flow of information within an organization in order to detect fraud or other criminal

activities. Employing human experts to analyze these data sets can be prohibitively expensive due

to their vast size and their time-evolving nature. Instead, we need to develop intelligent tools that

can automatically analyze these types of dynamic networks.

There has been a great deal of research on pattern mining and prediction in social networks

[7, 8, 10, 11]. In this project, we focused on the problem of link prediction. In particular, predicting

with whom an individual will communicate in the near future based on recently observed activity.

Most current approaches to this problem utilize graph-theoretic measures, aggregating links into
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Figure 2: Time frames for observations and predictions. The system predicts the communication
pattern in the PREDICT period based on the observed communications in the OBSERVE period.

a static network even though the underlying structure may vary over time [3, 13, 6]. As a result,

they largely ignore temporal properties of the graph which may be relevant to link formation. Our

hypothesis is that we can improve link predictions in a dynamic network by modeling the temporal

aspect of the network.

2.1 Features for Link Prediction

We use a supervised statistical learning approach to predict with whom an individual will com-

municate in the PREDICT time period based on the recent network activity observed during the

OBSERVE time period (see Figure 2). Our system takes advantage of traditional graph-theoretic

measures as well as temporal features that model the dynamically evolving nature of the commu-

nication network.

In our representation of the network, nodes correspond to individuals while directed edges

correspond to email messages. The set of features listed below are generated for each pair of nodes

in the communication network. For our purposes,i represents source or sender andj and the target

or recipient.Γ(k) denotes the set of neighbors of nodek (regardless of the direction of links to the

neighbors).

2.1.1 Graph-Theoretic Features

These features were derived based on a static representation of the communication network:
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• Jaccard Coefficient: The number of shared neighbors of two nodes, normalized by the total

number of neighbors of the two nodes.

Jaccard :=
|Γ(i)|

⋂
|Γ(j)|

|Γ(i)|
⋃
|Γ(j)|

(1)

• Minimum Common Neighbor Degree (MCND): The minimum degree of the shared neigh-

bors of two nodes. This feature is similar to the Adamic/Adar coefficient [1], and captures

the tendency for a common neighbor with a smaller number of total neighbors to be more

significant.

MCND := min
k∈Γ(i)

⋃
Γ(j)

(Γ(k)) (2)

• Katz Coefficient: A weighted sum of the number of directed paths between two nodes. In

our system, we use anunrolledversion of the Katz measure that encodes a separate feature

for each path length,l. We use a perceptron learning algorithm to determine the appropriate

weightsβl.

Katz :=
N∑

l=1

βl|pathsl
i,j| (3)

• Node Identity: The role or identity of the pair of nodesi and j (e.g., Assistant →

Manager ).

2.1.2 Temporal Features

These features attempt to capture the time varying nature of the network. In our model, we dis-

cretize elapsed time into a set ofn partitions{p1, p2, ..., pn}. For example, a set of partitions could

be 0-1 days ago, 1-2 days ago, 2-5 days ago, and so on.

• Most Recent Link Direction: The direction (send or receive) of the most recent link between

the sourcei and targetj.

• Most Recent Link Time: The elapsed time partition (e.g.,pt) of the most recent link between
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the sourcei and targetj.

• Link Pattern: An array of the elapsed time partitions in which there was a link between the

sourcei and targetj (e.g., [pt1, pt2, ... ]). This is intended to capture any frequent patterns of

communications between two nodes over time.

• Forwarding Pattern: The set of identities (e.g., Assistant, Manager) of all nodes that have

sent a message to the source nodei, conditioned on the identities of the source and target

nodes. This features is used to model common forwarding patterns based on node identities.

• Co-recipients: This feature is activated when the source and target nodesi andj were co-

recipients of an message with multiple recipients.

• Temporal Graph Features: Temporal variations of the graph-theoretic measures described in

the previous section (e.g., Katz) derived from the structure of the communication network at

each discretized time partitionpt.

2.2 Supervised Learning Model

We used a discriminative machine learning approach to determine the importance of each feature

from the data. In particular, we used a perceptron online learning algorithm [12] that can update its

parameters as new data instances are observed without needing lengthy “retraining.” This allows

the system to rapidly incorporate new information as the graph evolves.

2.3 Evaluation

In order to train and evaluate our model, we used the Enron email dataset [2] that is publicly

available online. This corpus contains data from about 150 employees at Enron and a total of

about 500,000 messages that was originally made public during the investigation by the Federal

Energy Regulatory Commission. For our task, we augmented the email addresses contained in

the data set (both TO and FROM the Enron employees) with the label identities (e.g., Manager,
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Figure 3: F1 measure, Recall, and Precision for GRAPH (Baseline), TEMPORAL, and ALL fea-
ture groups.

Assistant, etc.) that was provided by researchers at UC Berkeley [9]. Since identity labels were

not available for all of the individuals in the data set, we used the subset containing of about 1,400

email addresses.

For our experiments, we trained and tested our system on 30,000 emails over the period of 3

months. We used anobservation windowof 1 month and apredict windowof 1 day, and ignored

the content of the messages (i.e. their text), which left us with only the identity of the sender and

receiver. Our system learned a model that predicts with whom a given individual would communi-

cate during the PREDICT frame, conditioned on the fact that the individual did communicate with

someone in that frame.

We used the first two months of the data to train the link prediction model. The system was

then evaluated on its ability to predict the communications that occurred in the remaining month.

Figure 3 reports the F1-measure for this task, given by the geometric mean of the precision and

recall. The baseline GRAPH uses only graph-theoretic measures, TEMPORAL uses only temporal

features, and ALL uses both graph-theoretic and temporal features.
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2.4 Discussion

Overall, our results suggest that there is a need for further improvement before our model is ready

to be used in real-world applications. However, we observed gains when modeling temporal infor-

mation in the network. In addition, we found that our performance on predicting future messages

between employees who have communicated recently is significantly better than on novel links

(i.e., those between two individuals who have not communicated in the last month). Examination

of the data does not reveal any prevailing pattern for these anomalous links, which raises doubts as

to whether they can be anticipated without more information.

While there has been a great deal of related literature on inference and analysis in social net-

works, relatively little work has been done on link prediction in dynamically evolving networks

at the level of time granularity (i.e., one day) presented in this report. One exception is the work

by Lahiri and Berger-Wolf [5] which looks at the problem of structure prediction using frequent

subgraphs. They present encouraging results of up to 85% accuracy on data sets including the

Enron email network. However, their evaluation differs from ours in their use of a slack variable,

which increases the time interval in which a prediction is considered accurate. Furthermore, they

also limit their model to frequent patterns and, as a result, their predictions cover only subset of

the actual interactions in the network.

2.5 Student’s Role

The work described above was performed as part of a two-student team consisting of myself (Tom

Yu Ouyang) and Aria Haghighi, under the supervision of Tine Eliassi-Rad. I was involved in all

parts of the project including the planning, design, and implementation of the system. In particular,

I focused more on the feature selection, training methodology, and performance evaluation aspects.

7



3 Internship Achievements

• We evaluated a range of features for link prediction in a communication network. In partic-

ular, we experimented with two sets of features: graph-based and time-based. The former

was based on static representations of the communication network – measured by traditional

graph-theoretic metrics. The latter captured the time varying nature of the network.

• We developed a link prediction model that utilizes both temporal and graph-theoretic fea-

tures. We trained and evaluated our model using the Enron email data set. Our results

confirmed our hypothesis: models that combine temporal and graph-theoretic feature sets

achieve a higher classification performance than models that use only one of the two feature

sets.

• We presented our work to other students and researchers at the lab-wide Summer Student

Research Symposium held at LLNL on August 9, 2007.

4 Internship Experience

One of the most memorable aspects about my summer internship at LLNL was the opportunity to

meet and get to know the other students and researchers at LLNL. It was truly exciting to meet

people from such a wide range of academic and research backgrounds. The student research sym-

posium, in particular, was a great way to learn about the research done by other DHS Scholars and

Fellows. It was also an excellent opportunity to share my own work with other LLNL employees.

During my visit, I also had the opportunity to attend some of the frequent seminars and talks

on topics ranging from chem-bio detection to information support and management systems for

intelligence analysts. I really appreciated the chance to learn about the breadth of work that was

happening at LLNL, especially those that were outside of my research area. It was also a wonderful

experience working with the Predictive Knowledge Systems group at LLNL. Through weekly

meetings with Tina Eliassi-Rad and the other members of the group, I learned a great deal about
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their work and the related research in machine learning and knowledge discovery.

The opportunity to work on this project over the past summer has also raised my awareness

of national security issues and how they relate to my research and career goals. The internship

experience has encouraged me to seriously consider returning for another DHS internship next

summer. Furthermore, through learning about the excellent opportunities and stimulating work

environment at LLNL, I am beginning to think about the possibility of pursuing a postdoctoral

fellowship or research position at a national laboratory after I graduate.

5 Homeland Security Missions and Goals

This project contributes to the DHS mission in several ways. First, our results suggest ways for

analysts to automatically predict future interactions between agents in communication networks

based on their past behavior. Second, our statistical model of link prediction can be adapted to the

task of anomalous link discovery, where we wish to detect links in a network that are statistically

unlikely and therefore worth further investigation. Finally, our analysis of temporal features in

communication networks suggest ways to improve the accuracy of other graph-based tasks, such

as automatic group discovery in dynamically evolving networks [4].
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