
University of Utah
50 S. Central Campus Drive
Salt Lake City, UT 84112

Final Report for “Bioforensics Text Extraction”

Submitted by:
Ellen Riloff
Associate Professor
School of Computing

FINAL REPORT
For the period ending September 30, 2007

Prepared for:
University of California
Lawrence Livermore National Laboratory
Attn: Linda Becker
P.O. Box 808, L-419
Livermore, CA 94551

Under
B529235

Date prepared
October 6, 2007

DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the UnitedStates Government or the University of California, and
shall not be used for advertising or product endorsement purposes. Work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

1



LLNL Subcontract B529235
Bioforensics Text Extraction

Prof. Ellen Riloff

LLNL Contract Technical Contact: David Buttler

1 Executive Summary

Often in Natural Language Processing (NLP) tasks we are presented with the problem of handling
phrases or words that may refer to another phrase that has previously occurred in a text. These
“referring” or “pointing-back” phrases are called anaphora and what they refer to are called an-
tecedents. If an anaphor and its antecedent refer to the sameentity in the “real-world” then they
are considered coreferential.

For an example consider the following sentence:

David Beckhamis the LA Galaxy midfielder.

The phrasethe LA Galaxy midfielderis an anaphor with antecedentDavid Beckham, since both
refer to the same entity in the “real-world” they are considered coreferential.

This project’s goal is to develop an automated system for identifying coreferent textual enti-
ties while utilizing modern machine learning techniques. Other objectives include allowing for
the system to easily exist stand-alone or as a module in a larger NLP system and exploring the
possibilities of knowledge-rich features for coreferenceresolution.

1.1 Previous Work

The first machine learning approach to coreference resolution that achieved results comparable to
more traditional “rule-based” approaches was described in[9]. Soon et al. developed 11 features
they hoped could adequately capture coreference and testedtheir system on the MUC 6 and MUC
7 test sets. For every possibly coreferent noun phrase in a document (denoted “markables” by
the authors), a feature vector would be created for it and each markable before it in the document.
After all feature vectors were created, a decision tree classifier was used to identify coreferent noun
phrases.

The Soon et al. system scored an F-measure of 63% on MUC 6 and achieved an F-measure
of 61% on MUC 7. While these scores are in the middle of the packfor systems that actually
participated in the MUC conferences, it was a great achievement for learning-based coreference
systems.

Cardie & Ng [6] took Soon et al. work further by greatly enriching the feature set, increasing
their numbers from 11 to the mid-fifties. This time, not only did this system perform better than
any other learning-based coreference approach, it also didbetter than any of the participants in the
original MUC conferences, achieving a F-measure score of 63.4 on MUC 6 and 61.6 on MUC 7.

2



Annotated Training
Documents

Unannotated Test 
Documents

Preprocessing Step Feature Extractors Classifier

Coreferent NPs

Sentence
Splitter

Paragraph
Splitter

Tokenizer

POS Tagger

Parser

Named Enti ty
Tagger

Training
Weights

Figure 1: Diagram of the COREF tool-chain.

1.2 The COREF Approach

The approach taken in this project is most similar to that of Cardie & Ng [6] described above. We
have developed a feature set heavily influence by Cardie & Ng,and incorporated many of the same
learning methods. Instead of using a decision tree as in [6],the COREF system is currently using
a perceptron-based classifier from the Weka toolkit [11].

The overall operation of the system pipeline occurs in threedistinct steps as outlined in Figure
1. Assuming that one is attempting to train and test a set of MUC documents, then, in step one, or
thePreprocessing step, all training documents are verified as existing and then passed a document
at a time along the following path:

1. SGML Stripper This preprocessor is MUC 6 & 7 specific, its job is to removes all SGML
tags from a supplied MUC document.

2. Paragraph Splitter Creates a separateANNOTS file that contains the bytespans of all para-
graphs this module could detect.

3. Sentence SplitterCreates anANNOTS file that contains the bytespans of all sentences the
splitter detects.

4. Tokenizer Creates anANNOTS file that contains bytespan information off all tokens in the
text.

5. POS TaggerThe OpenNLP tagger is run over the document and its values arestored in an
ANNOTS file.

3



6. Parser Parses a document a sentence at a time. Currently, one is freeto choose between
using two PCFG based parsers, the Stanford parser [3] and theBerkeley parser [7]. Both
parsers are trained on Wall Street Journal (WSJ) text, for a more detailed analysis of these
two parsers look in Section 3.1.

7. Name Entity Tagger All named entities in a document are recorded in anANNOTS file.
The NER system can be configured to use the OpenNLP Maximum-Entropy system or the
Stanford NER Conditional Random Field based system [2]. Allavailable models for both
systems are trained on WSJ texts.

8. Markable extractor This section of the system proved to be a crucial step in producing the
current performance. The foundation of this section of the system was initially derived from
Vincent Ng’s work in [4].

4



The following algorithm is the current method used to collect all markables from a document.

Input: A text documentD

NPs := all noun phrases in D.

NEs := the set of named entities in D.

/* Filtering step. */
foreachnoun phrasenp ∈ NPs do
if np contains a preposition or embedded clause:

Removenp from NPs if np is the child of anothernp:
Removenp from NPs

foreachnoun phrase∈ NPs do
foreachnamed entity∈ NEs do

if anp bytespan overlaps with a named entityne bytespan:
Expandnp’s bytespan so that it subsumesne.

else ifne is a proper substring ofnp:
Add ne to NPs

/* Add in named entities that are not part of the NP set. */
foreachnamed entityne in NEs do
/* The contains function and returns true if the second argument is a substring of the first. */
if ne /∈ NP and ∀np ∈ NPS, ne /∈ contains(np, ne):

Add ne to NPs

/* Add in nested noun phrases that are not already in the set. */
foreachnoun phrasenp ∈ NPs do
if np contains a nested noun phrasennp /∈ NPs:

Add nnp to NPs

Output: NPs

The Paragraph splitter, Sentence splitter, and Tokenizer “annotators” are all presently taken
from the OpenNLP project’s tools collection.

This step produces8 separateANNOTS files for each training document. These files are used
in theFeature Extraction step to produce value for each of the features. After thePreprocessing
step has completed, the system begins creating feature vectors for every noun phrase and each
of its preceding noun phrases on a per document basis. Therefore, if given a noun phrasenpi, a
feature vector,< npi, npj >, will be created for1 ≤ j ≤ i − 1. Therefore, is a given document
hasn noun phrases, the total number of feature vectors created will be n2

−n

2
. A comprehensive list

of features currently available for use in this system can befound in Appendix.
Several features rely on external tools such as WordNet thatwould be inefficient to query

against repeatedly while reinitializing each time. Therefore, feature values that rely on WordNet

5



are collected at the beginning of each document and cached until their value is needed in feature
vector creation. This step comprises the largest amount of of the total execution time of the system,
even though care has been taken to ensure the unnecessary recalculation of values for markables
as their vector is created.

At the end of theFeature Extraction step all features (training and/or test) are stored in a
file nameddata-set-name.features and then subsequently used in theClassifier stepto develop
classifier weights if training, or to actually make predictions if testing.

To actually apply the learned weights to the test features, currently the system employs a
perceptron-based classifier taken from the Weka toolkit [11]. The toolkit contains many other
classifiers, such as decision trees, support vector machines, or logistic regression that can be used
to both train and test any given data set. The perceptron was selected for its ease of use and low
amount of “tweaking” (few parameters to adjust, this is bothgood and bad.)

2 Current Results

The data used in gathering the following results are from theMessage Understanding Conferences
6 & 7. The current COREF results are compared against its two closest relatives, the Soon et al.
and the Cardie/Ng system. These scores were tabulated usingthe MUC 6 coreference metric [10].

2.1 MUC 6
System Recall Precision F-measure
COREF 0.72 0.54 0.62

Soon et al. [9] 0.59 0.67 0.62
Cardie/Ng [6] 0.70 0.58 0.64

2.2 MUC 7
System Recall Precision F-measure
COREF 0.77 0.47 0.59

Soon et al. 0.56 0.66 0.60
Cardie/Ng 0.66 0.58 0.62

3 Component Analysis

In order to better understand the results presented above, it may be best to now start looking “under
the hood” at the various components that make up this system and their overall performance.

3.1 Empirical Parser Analysis

In deciding which parser to use as the basis for this project,several factors were considered such as
accuracy, efficiency, ease of implementation and domain flexibility. The parsers in question were

6



the Berkeley, Stanford and Sundance parsers and to test these criteria a test reaching across various
domains was created. The test set included texts from the MUC4 terrorism corpus, the Promed
infectious disease outbreak corpus and a collection of documents from an in-house subjectivity
study. The size of each corpus is listed in the following table.

MUC-4 Promed Subjectivity
Sentences 1664 1718 139

Words 37385 39582 4692
Words/Sentence 22.46 23.03 33.75

Measuring the accuracy of the three parsers in question may not be feasible for this project be-
cause of their differing backgrounds, notably that of the Berkeley/Stanford pair and Sundance. The
later being a shallow parser, the former both being PCFG-based full parsers. In the corresponding
literature for the Berkeley and Stanford parsers, identical accuracy tests were performed on each
parser with the result being Berkeley achieving several percentage points higher F-measure than its
Stanford counterpart. These tests were performed on newswire texts, which may not be of much
help with the task at hand.

Runtime analysis and parsing results on the test sets described above follow:

Runtime: Total time spent parsing each dataset.

Sundance Berkeley Stanford
Promed 20.1sec 53min 48min
MUC4 17.43sec 28min 106.1min
SUBJ 2.38sec 7min 9min

On the MUC4 test set, the Stanford parser took an inordinate amount of time. The reason
behind this result is based on how the Stanford parser handled sentences it could not parse.
The Berkeley parser is able to determine relatively quicklyif a sentence will not result in
a parser and abort, whereas the Stanford parser attempts to work on a sentence for a much
longer amount of time before giving up. The fact that the MUC4corpus is entirely upper-
case may also have contributed to Stanford’s poor runtime performance.

Parsing: The number in parentheses denotes the number of sentences for which a parse was “at-
tempted.” The number outside of parentheses represents thenumber of sentences for which
a parse was generated successfully (speaking nothing of its“accuracy.”)

Sundance Berkeley Stanford
Promed 2020(2020) 1701 (1718) 2017 (2020)
MUC4 1685(1685) 1636 (1664) 1624 (1624)
SUBJ 159(159) 139 (139) 154 (154)

7



The Sundance shallow parser [8] finished first in runtime and was able to generate a parse for
every sentence presented to it, however being a shallow parser, it was technically doing a task
slightly different than the other two parsers. The differences in sentence numbers between what
is listed in the test set description and what is listed aboveresults from differences in sentence
splitting among the parsers.

In the end, the decision was made to implement feature extractors for both the Berkeley and
Sundance parsers since no clear winner in accuracy could be determined between the two due to
their different parsing paradigms.

3.2 Empirical NER Analysis

Another crucial ingredient of the COREF tool-chain is the Named Entity Recognizer. Several sys-
tems were available for use in the project, but the most notable include the OpenNLP maximum
entropy NER system and the Stanford conditional random field(CRF) based system [2]. Several
experiments were ran to determine the best combination of NER System/Parser to facilitate extrac-
tion of markables that were labeled as coreferent in the MUC data sets. Results varied from these
different combinations of NER systems and parsers, but are summarized in the following table:

NER System/ParserRecall Precision F-measure

OpenNLP/Stanford 0.85 0.37 0.51
OpenNLP/Berkeley 0.88 0.37 0.52
Stanford/Stanford 0.87 0.38 0.53
Stanford/Berkeley 0.89 0.38 0.54

Currently, the system is employing the Stanford NER system and the Berkeley parser, although
the capabilities for supplanting these tools with the OpenNLP NER and Stanford parser remain
intact. Attempts were made to retrain the OpenNLP NER systemon the MUC NER keys but the
results were not usable and generated results far worse thanthe default models supplied by the
OpenNLP project.

4 Future Work

4.1 Short Term

The work that most needs current attention is the markable extraction module. While the recall of
the coreferent NPs is high, the precision is low and is the source of the majority of the noise in
the training data. While some of this could be alleviated using the methods described in [5], it is
simply the case that this system generates more markables than it needs.

Other than the markable issue, there are a few cosmetic issues, namely, implementing more
choices on the command line for enabling, disabling tools such as parsers and NER systems from
the tool-chain, thus eliminating the need to change code to perform different experiments. Another
“ease of use” issue is allowing for a wider range of training and test data to be processed by the

8



system. Currently, the system is configured to handle MUC 6 & 7data easily during testing and
training, while there are resources to allow for testing on non-MUC data, there is currently no way
to train on such.

4.2 Long Term

In near future, one of the purposes for creating this system is to explore other, more knowledge-
rich methods of resolving anaphors. For instance, can real world knowledge, such as,Bill Gates
was one of the founders of Microsoft, Inc.help in the resolution of coreferent noun phrases?

Another research direction that is gaining in popularity isusing the web as a knowledge base.
For instance, can the fact that the phrases “George W. Bush” and “the President” appear in hundreds
of thousands of documents together help us determine that they are coreferent?

5 Acknowledgements

Many thanks go out to Vesalin Stoyanov for his considerable time and insight into the design as
well as coding of this system. Also to Cornell University forallowing us to use their gforge code
repository system for givin us an easy way to share code and ideas.

9



References

[1] BAGGA, A., AND BALDWIN , B. Algorithms for scoring coreference chains.Proceedings of
the Linguistic Coreference Workshop(1998).

[2] FINKEL , J., DINGARE, S., NGUYEN, H., NISSIM, M., MANNING , C., AND SINCLAIR , G.
Exploiting context for biomedical entity recognition: From syntax to the web.Joint Workshop
on Natural Language Processing in Biomedicine and its Applications at Coling(2004).

[3] K LEIN , D., AND MANNING , C. D. Fast exact inference with a factored model for natural
language parsing.Advances in Neural Information Processing Systems 15(2003).

[4] NG, V. Improving Machine Learning Approaches to Noun-Phrase Coreference Resolution.
PhD thesis, Cornell University, 2004.

[5] NG, V., AND CARDIE, C. Combining sample selection and error-driven pruning for machine
learning of coreference rules.Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing(2002).

[6] NG, V., AND CARDIE, C. Improving machine learning approaches to coreference resolution.
Proceedings of the 40th Annual Meeting of the ACL(2002).

[7] PETROV, S., AND KLEIN , D. Improved inference for unlexicalized parsing.HLT-NAACL
(2007).

[8] RILOFF, E., AND PHILLIPS, W. An introduction to the sundance and autoslog systems.
University of Utah School of Computing Technical Report #UUCS-04-015(2004).

[9] SOON, W. M., NG, H. T., AND L IM , D. C. Y. A machine learning approach to coreference
resolution of noun phrases.Proceedings of the ACL(2001).

[10] V ILLAIN , M., ABERDEEN, J., BERGER, J., CONNOLLY, D., AND HIRSCHMAN, L. A
model-theoretic coreference scoring scheme.Proceedings of the 6th conference on Message
understanding(1995).

[11] WITTEN, I. H., AND FRANK , E. Data Mining: Practical machine learning tools and tech-
niques, 2nd ed. Morgan Kaufmann, 2005.

10



A Feature Set

WhereNPj refers to the antecedent andNPi refers to the anaphor.

1. DocNo - The document number that both NPs belong to. (MUC specific)

2. ID1 - The document thatNPi is from.

3. ID2 - The document thatNPj is from.

4. SoonStr - Listed as Compatible if after removing determiners the strings of the two noun
phrases match, Incompatible otherwise.

5. HeadNoun1 - The head noun ofNPi.

6. HeadNoun2 - The head noun ofNPj .

7. ProStr - Compatible if both strings are pronouns and theirtext match, Incompatible other-
wise.

8. PNStr - Compatible if both strings are proper names and their text match, Incompatible
otherwise.

9. WordsStr - Compatible if both NPs are non-pronominal and the strings match.

10. SoonStrNonPro - Compatible if both NPs are non-pronominal and the strings match after all
determiners have been removed.

11. WordOverlap - Compatible if both NPs share a common word.

12. Modifier - Compatible if the prenominal modifiers ofNPi are a subset of the prenominal
modifiers ofNPj , or vice-versa.

13. PSubstr - Compatible if both NPs are proper names and one is a proper substring of the other.

14. WordsSubstr - Compatible if both NPs are non-pronominaland one np is proper substrings
of the other.

15. AnaMed - This feature has a value offrac(m − med(NPi, NPj))m, wherem = len(NPi)
andmed() is the minimum edit distance

16. AnteMed - Similar to AnaMed:frac(n − med(NPi, NPj))n, wheren = len(NPj).

17. Pronoun1 -Y if NPi is a pronoun,N otherwise.

18. Pronoun2 -Y if NPj is a pronoun.

19. Definite1 -Y if NPi is a definite noun phrase.

11



20. Definite2 -Y if NPj is a definite noun phrase.

21. Demonstrative2 -Y if NPj is a demonstrative noun phrase.

22. Embedded1 -Y if NPi is a nested/embedded NP.

23. Embedded2 -Y if NPj is a nested/embedded NP.

24. InQuote1 -Y if NPi is inside quotes.

25. InQuote2-Y if NPj is inside quotes.

26. BothProperNouns -Y if both NPs are proper nouns.

27. BothDefinites -Y if both NPs are definite noun phrases.

28. BothEmbedded -Y if both NPs are embedded noun phrases.

29. BothInQuotes -Y if both NPs are inside quoted text.

30. BothPronouns -Y if both NPs are pronouns.

31. GramRole1 - The grammtical role ofNPi.

32. GramRole2 - The grammatical role ofNPj .

33. Appositive -Y if NPi andNPj are in an appositive relationship to each other.

34. MaximalNP - Compatible if both NPs maximal-NP projection is the same.

35. Animacy - Compatible if both NPs match in animacy.

36. Gender - Compatible if both NPs match in gender.

37. Number - Compatible if both NPs match in number.

38. SentNum - The distance in number of sentences between thetwo NPs.

39. ParNum- The distance between the two NPs in terms of paragraphs.

40. Alias - Compatible if one NP is an alias of the other.

41. Span - Incompatible if one NP bytespan overlap with the other.

42. Binding - Incompatible if the NPs violate conditions of Chomsky’s binding theory.

43. Contraindices - Incompatible if the NPs are separated bypreposition or both NPs are non-
pronimal separated by a non-copular verb.

44. Syntax - Incompatible if the two NP’s have incompatible values for Binding, Contraindices,
Span, or MaximalNP.

12



45. ProEquiv - Incompatible if both NPs are pronouns, agree in Gender, Number and appear in
consecutive sentences.

46. Indefinite - Incompatible ifNPi is an indefinite noun phrase and is not an appositive.

47. Prednom - Compatible if the NPs are in a predicate nominalconstruction.

48. Pronoun - Incompatible ifNPj is a pronoun andNPi is not.

49. ContainsPN - Incompatible if both NPs contain proper names but also contain no words in
common.

50. Constraints - Compatible if the two NP’s compatible values for Gender, Number, and do not
have incompatible values for Contraindices, Span, Animacy, Pronoun and ContainsSpan

51. ProperNoun - Incompatible if both NPs are proper names with no words in common.

52. Title - Incompatible if one or both NPs are a title.

53. FullString1 - The full text ofNPi.

54. FullString2 - The full text ofNPj .

55. WordNetClass - Compatible if both NPs are members of the same class, determined using
WordNet and the NER system.

56. WordNetDist - The WordNet distance between both NPs.

57. WordNetSense - Compatible if both NPs share a WordNet sense.

58. Subclass - Compatible if one NP’s WordNet sense is a subclass of the other’s WordNet sense.

B Using the System

The following instructions specify how to train and test theCOREF system on the MUC 6 and 7
data. These data sets are already included in the system and can be found in thecoref/data
directory.

B.1 Installation, Configuration and Data Preparation

To install the system given you have an account atgforge.cis.cornell.edu: % cvs -d
:ext:developername@gforge.cis.cornell.edu:/cvsroot/coref checkout .

The following directories should appear belowcoref: src, stable, lib, bin, config,
data, externalTools, scripts

The following two files need to be changed to match your local environment,./externalTools/jwnl/file
and./config/coref.cfg.

13



The current stable version of the COREF code (which is also the version of code that generated
the results in this report) can be found under thestable directory.

• In thefile properties.xml file, the line:<param name=‘‘dictionary path’’
value=‘‘/usr/local/WordNet-3.0/dict’’/> needs to be changed to point to
your local WordNet dictionary directory.

• In thecoref.cfg file, at the very least, the fields forTRAIN DIRECTORY andTRAIN FILELIST
need to be set to their locations on your machine. An example coref.cfg file can be found in
thecoref/config directory.

Currently, the COREF system imposes a rigid directory structure upon its training and testing
files. In thecoref/data directory are several examples of how to format test and training data.
In general, givenN training files, thenN directories need to be created in which each training file
is moved to a directory of its own.

B.1.1 Setting the Classpath

To build and run the system, all the contents of thecoref/lib directory must be placed on the
Java classpath.

B.2 Training

Assuming that the classpath is set accordingly, then to train the system on MUC 6 or MUC 7 data,
edit theTRAIN DIRECTORY line in the coref.cfg file to point to the data set you wish to train on
and add the following line to the coref.cfg file:TRAIN ONLY=true. This last command in the
config file indicates that you simply want to train and save thefeature vectors of the training for
future use in thecoref/WORK directory.

To train execute the following commmand:
java -XmxNm Main.MUC6LearnerwhereN ≥ 512. The-Xmx flag specifies how large

the Java heap size can grow, and the COREF system requires more than the default amount.

B.3 Testing and Scoring

To test on new data, and score your results, simply remove theTRAIN ONLY line from your config
file and repeat the command for training.

B.3.1 Interpreting the results

After running the system in test mode, you should see lines appearing in the following format:
3 4436,4435(20641)=8871;0.1555,0.6605=0.2517;. . . ;0.5338,0.7041=0.6072;

This is the output of COREF’s scoring module and is interpreted in the following manner:

1. The3 refers to the iteration of the perceptron updating scheme.

14



2. 4436,4435(20641)=8871; refers to the number of positive, negative, excluded and total per-
ceptron updates during this iteration.

3. The next three sets of numbers separated by semi-colons are the scores of the training set
on three different metrics. The first metric just the Recall,Precision and F-measure on the
positive class identification after chain clustering has been performed. The second metric
is the B-cubbed score defined in [1]. The third metric is the MUC coreference task score
defined in [10].

4. The remaining three sets of numbers separated by semicolons are the same three metrics
applied to the results of the classifier on the test data.

15


