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1 Executive Summary

Often in Natural Language Processing (NLP) tasks we areepted with the problem of handling
phrases or words that may refer to another phrase that haopsty occurred in a text. These
“referring” or “pointing-back” phrases are called anaph@nd what they refer to are called an-
tecedents. If an anaphor and its antecedent refer to the satitg in the “real-world” then they
are considered coreferential.

For an example consider the following sentence:

David Beckhanis the LA Galaxy midfielder.

The phras¢he LA Galaxy midfieldes an anaphor with antecedddavid Beckhamsince both
refer to the same entity in the “real-world” they are consadkcoreferential.

This project’s goal is to develop an automated system famtifleng coreferent textual enti-
ties while utilizing modern machine learning techniqueghéd objectives include allowing for
the system to easily exist stand-alone or as a module in arl&gP system and exploring the
possibilities of knowledge-rich features for coreferenesolution.

1.1 Previous Work

The first machine learning approach to coreference resoltkiat achieved results comparable to
more traditional “rule-based” approaches was describdf]inSoon et al. developed 11 features
they hoped could adequately capture coreference and tbstiedystem on the MUC 6 and MUC
7 test sets. For every possibly coreferent noun phrase incandent (denoted “markables” by
the authors), a feature vector would be created for it ant ezarkable before it in the document.
After all feature vectors were created, a decision treesdias was used to identify coreferent noun
phrases.

The Soon et al. system scored an F-measure of 63% on MUC 6 &imel/ad an F-measure
of 61% on MUC 7. While these scores are in the middle of the gaclsystems that actually
participated in the MUC conferences, it was a great achieverfor learning-based coreference
systems.

Cardie & Ng [6] took Soon et al. work further by greatly eniiied the feature set, increasing
their numbers from 11 to the mid-fifties. This time, not onlig this system perform better than
any other learning-based coreference approach, it alsbeattdr than any of the participants in the
original MUC conferences, achieving a F-measure score @gf 68 MUC 6 and 61.6 on MUC 7.
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Figure 1: Diagram of the COREF tool-chain.

1.2 The COREF Approach

The approach taken in this project is most similar to that afdiz & Ng [6] described above. We
have developed a feature set heavily influence by Cardie &aNd jncorporated many of the same
learning methods. Instead of using a decision tree as irfj6]COREF system is currently using
a perceptron-based classifier from the Weka toolkit [11].

The overall operation of the system pipeline occurs in tldisénct steps as outlined in Figure
1. Assuming that one is attempting to train and test a set o€Mldcuments, then, in step one, or
thePreprocessing stepall training documents are verified as existing and thesgéa document
at a time along the following path:

1. SGML Stripper This preprocessor is MUC 6 & 7 specific, its job is to removéS&ML
tags from a supplied MUC document.

2. Paragraph Splitter Creates a separa#dNNOTS file that contains the bytespans of all para-
graphs this module could detect.

3. Sentence SplitterCreates alMNNOTS file that contains the bytespans of all sentences the
splitter detects.

4. Tokenizer Creates al\NNOTS file that contains bytespan information off all tokens in the
text.

5. POS TaggerThe OpenNLP tagger is run over the document and its valuestared in an
ANNOTS file.



6. Parser Parses a document a sentence at a time. Currently, one isofd®ose between
using two PCFG based parsers, the Stanford parser [3] anBeaheley parser [7]. Both
parsers are trained on Wall Street Journal (WSJ) text, fopeerdetailed analysis of these
two parsers look in Section 3.1.

7. Name Entity Tagger All named entities in a document are recorded iNfAMNOTS file.
The NER system can be configured to use the OpenNLP Maximumefynsystem or the
Stanford NER Conditional Random Field based system [2].a#dlilable models for both

systems are trained on WSJ texts.

8. Markable extractor This section of the system proved to be a crucial step in prioguthe
current performance. The foundation of this section of gretem was initially derived from
Vincent Ng's work in [4].



The following algorithm is the current method used to cdlEdtmarkables from a document.

[ |
Input: A text documentD

N Ps := all noun phrases in D.
N Es := the set of named entities in D.

[* Filtering step. */
foreach noun phraseyp € N Ps do
if np contains a preposition or embedded clause:
Removenp from N Ps if np is the child of anothenp:
Removenp from N Ps

foreachnoun phrase N Ps do
foreachnamed entity= NE's do
if anp bytespan overlaps with a named entitybytespan:
Expandnp’s bytespan so that it subsumes
else ifne is a proper substring ofp:
Add ne to NPs

/* Add in named entities that are not part of the NP set. */
foreach named entityre in NE's do
[* The contains function and returns true if the second argpims a substring of the first. */
if ne ¢ NP andVnp € NPS, ne ¢ contains(np, ne):
Addneto NPs

/* Add in nested noun phrases that are not already in the set. *
foreach noun phrasep € NPs do
if np contains a nested noun phrasep ¢ N Ps:

Add nnp to NPs

Output: NPs

The Paragraph splitter, Sentence splitter, and Tokeni@aendtators” are all presently taken

from the OpenNLP project’s tools collection.

This step produces separat?ANNOTS files for each training document. These files are used

in the Feature Extraction step to produce value for each of the features. AfteRreprocessing
step has completed, the system begins creating feature veapesvéry noun phrase and each
of its preceding noun phrases on a per document basis. Dhneyéff given a noun phrasep;, a
feature vector< np;, np; >, will be created forl < j < i — 1. Therefore, is a given document
hasn noun phrases, the total number of feature vectors creatétevi>". A comprehensive list
of features currently available for use in this system cafobed in Appendix.

Several features rely on external tools such as WordNetwioaidd be inefficient to query

against repeatedly while reinitializing each time. Theref feature values that rely on WordNet
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are collected at the beginning of each document and cachiddhair value is needed in feature
vector creation. This step comprises the largest amourfttbbdotal execution time of the system,
even though care has been taken to ensure the unnecessdcylieaon of values for markables
as their vector is created.

At the end of theFeature Extraction step all features (training and/or test) are stored in a
file nameddata-set-naméeatures and then subsequently used inGlessifier stepto develop
classifier weights if training, or to actually make predicts if testing.

To actually apply the learned weights to the test featurasiently the system employs a
perceptron-based classifier taken from the Weka toolkit.[Ilhe toolkit contains many other
classifiers, such as decision trees, support vector maghoandogistic regression that can be used
to both train and test any given data set. The perceptron alasted for its ease of use and low
amount of “tweaking” (few parameters to adjust, this is bglod and bad.)

2 Current Results

The data used in gathering the following results are fronMllessage Understanding Conferences
6 & 7. The current COREF results are compared against its tasest relatives, the Soon et al.
and the Cardie/Ng system. These scores were tabulatedtheifdUC 6 coreference metric [10].

2.1 MUCG6
System Recall| Precision| F-measure
COREF 0.72 0.54 0.62
Soonetal. [9]] 0.59 0.67 0.62
Cardie/Ng [6]| 0.70 0.58 0.64
2.2 MUCY7
System | Recall | Precision| F-measure
COREF | 0.77 0.47 0.59
Soonetal| 0.56 0.66 0.60
Cardie/Ng| 0.66 0.58 0.62

3 Component Analysis

In order to better understand the results presented aldowayibe best to now start looking “under
the hood” at the various components that make up this systeintheir overall performance.

3.1 Empirical Parser Analysis

In deciding which parser to use as the basis for this progesteral factors were considered such as
accuracy, efficiency, ease of implementation and domairbiléy. The parsers in question were



the Berkeley, Stanford and Sundance parsers and to test¢htsia a test reaching across various
domains was created. The test set included texts from the MIt&Erorism corpus, the Promed
infectious disease outbreak corpus and a collection of mecds from an in-house subjectivity
study. The size of each corpus is listed in the followingeabl

MUC-4 | Promed| Subijectivity
Sentences 1664 1718 139
Words 37385 | 39582 4692
Words/Sentence 22.46 | 23.03 33.75

Measuring the accuracy of the three parsers in question midyenfeasible for this project be-
cause of their differing backgrounds, notably that of thekBkey/Stanford pair and Sundance. The
later being a shallow parser, the former both being PCF@&dbadl parsers. In the corresponding
literature for the Berkeley and Stanford parsers, idehfacauracy tests were performed on each
parser with the result being Berkeley achieving severatgraiage points higher F-measure than its
Stanford counterpart. These tests were performed on neesgits, which may not be of much
help with the task at hand.

Runtime analysis and parsing results on the test sets dedaibove follow:

Runtime: Total time spent parsing each dataset.

Sundance Berkeley| Stanford
Promed| 20.1sec| 53min 48min
MUC4 | 17.43sec| 28min | 106.1min

SUBJ | 2.38sec 7min 9Imin

On the MUCA4 test set, the Stanford parser took an inordinateuat of time. The reason
behind this result is based on how the Stanford parser hdrs@ietences it could not parse.
The Berkeley parser is able to determine relatively quigkly sentence will not result in
a parser and abort, whereas the Stanford parser attempisrkoonw a sentence for a much
longer amount of time before giving up. The fact that the MUWfo4pus is entirely upper-
case may also have contributed to Stanford’s poor runtim@peance.

Parsing: The number in parentheses denotes the number of sentemaelsith a parse was “at-
tempted.” The number outside of parentheses representaithber of sentences for which
a parse was generated successfully (speaking nothing“acitsiracy.”)

Sundance| Berkeley Stanford
Promed| 2020(2020) 1701 (1718) 2017 (2020)
MUC4 | 1685(1685) 1636 (1664) 1624 (1624)
SUBJ | 159(159) | 139 (139) | 154 (154)




The Sundance shallow parser [8] finished first in runtime aad able to generate a parse for
every sentence presented to it, however being a shallovepatsvas technically doing a task
slightly different than the other two parsers. The differes in sentence numbers between what
is listed in the test set description and what is listed abvegealts from differences in sentence
splitting among the parsers.

In the end, the decision was made to implement feature eégtsator both the Berkeley and
Sundance parsers since no clear winner in accuracy couleteendined between the two due to
their different parsing paradigms.

3.2 Empirical NER Analysis

Another crucial ingredient of the COREF tool-chain is thenidal Entity Recognizer. Several sys-
tems were available for use in the project, but the most netaiclude the OpenNLP maximum
entropy NER system and the Stanford conditional random {ieRIF) based system [2]. Several
experiments were ran to determine the best combination & Sfstem/Parser to facilitate extrac-
tion of markables that were labeled as coreferent in the Mdta dets. Results varied from these
different combinations of NER systems and parsers, butiarer&arized in the following table:

| NER System/ParserRecall| Precision| F-measurg

OpenNLP/Stanford| 0.85 0.37 0.51
OpenNLP/Berkeley 0.88 0.37 0.52
Stanford/Stanford | 0.87 0.38 0.53
Stanford/Berkeley | 0.89 0.38 0.54

Currently, the system is employing the Stanford NER systedihe Berkeley parser, although
the capabilities for supplanting these tools with the OpeANNER and Stanford parser remain
intact. Attempts were made to retrain the OpenNLP NER systeithe MUC NER keys but the
results were not usable and generated results far worsethleatefault models supplied by the
OpenNLP project.

4 Future Work

4.1 Short Term

The work that most needs current attention is the markalitaeion module. While the recall of
the coreferent NPs is high, the precision is low and is thecaf the majority of the noise in
the training data. While some of this could be alleviateshgshe methods described in [5], it is
simply the case that this system generates more markalalesttheeds.

Other than the markable issue, there are a few cosmeticsisaaenely, implementing more
choices on the command line for enabling, disabling toothsas parsers and NER systems from
the tool-chain, thus eliminating the need to change codetimpn different experiments. Another
“ease of use” issue is allowing for a wider range of trainimgl aest data to be processed by the



system. Currently, the system is configured to handle MUC 6dafa easily during testing and
training, while there are resources to allow for testing on#MUC data, there is currently no way
to train on such.

4.2 Long Term

In near future, one of the purposes for creating this sysgeto explore other, more knowledge-
rich methods of resolving anaphors. For instance, can reddvknowledge, such agill Gates
was one of the founders of Microsoft, Irielp in the resolution of coreferent noun phrases?

Another research direction that is gaining in popularityssng the web as a knowledge base.
For instance, can the fact that the phrases “George W. Bugh'the President” appear in hundreds
of thousands of documents together help us determine tbptite coreferent?
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A

Feature Set

WhereN P; refers to the antecedent andP, refers to the anaphor.

1.
2.
3.
4.

10.

11.
12.

13.
14.

15.

16.
17.
18.
19.

DocNo - The document number that both NPs belong to. (MUWsCi§ip)
ID1 - The document tha¥ P, is from.
ID2 - The document thaV P; is from.

SoonStr - Listed as Compatible if after removing deteersrihe strings of the two noun
phrases match, Incompatible otherwise.

HeadNounl - The head noun§fP;.
HeadNoun2 - The head noun§fP;.

ProStr - Compatible if both strings are pronouns and tteeit match, Incompatible other-
wise.

PNStr - Compatible if both strings are proper names and tegt match, Incompatible
otherwise.

. WordsStr - Compatible if both NPs are non-pronominal dr&dstrings match.

SoonStrNonPro - Compatible if both NPs are non-pronahand the strings match after all
determiners have been removed.

WordOverlap - Compatible if both NPs share a common word.

Modifier - Compatible if the prenominal modifiers 8fP, are a subset of the prenominal
modifiers of N P;, or vice-versa.

PSubstr - Compatible if both NPs are proper names ands@groper substring of the other.

WordsSubstr - Compatible if both NPs are non-pronomanal one np is proper substrings
of the other.

AnaMed - This feature has a valuefofac(m — med(N P;, N P;))m, wherem = len(N P;)
andmed() is the minimum edit distance

AnteMed - Similar to AnaMedfrac(n — med(N P;, N P;))n, wheren = len(N F;).
Pronounl Y if NP, is a pronoun)N otherwise.
Pronoun2 ¥ if NP; is a pronoun.

Definitel -Y if N P; is a definite noun phrase.
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20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44.

Definite2 -Y if N P; is a definite noun phrase.

Demonstrative2Y if N P; is a demonstrative noun phrase.
EmbeddedlY¥ if NP, is a nested/embedded NP.

Embedded2Y if NP; is a nested/embedded NP.

InQuotel Y if NP, is inside quotes.

InQuote2Y if NP; is inside quotes.

BothProperNouns¥ if both NPs are proper nouns.

BothDefinites Y if both NPs are definite noun phrases.
BothEmbeddedY if both NPs are embedded noun phrases.
BothInQuotesY if both NPs are inside quoted text.

BothPronounsY if both NPs are pronouns.

GramRolel - The grammtical role 8fF,.

GramRole2 - The grammatical role 8tP;.

Appositive Y if NP, andN P; are in an appositive relationship to each other.
MaximalNP - Compatible if both NPs maximal-NP projentis the same.
Animacy - Compatible if both NPs match in animacy.

Gender - Compatible if both NPs match in gender.

Number - Compatible if both NPs match in number.

SentNum - The distance in number of sentences betwedwahePs.
ParNum- The distance between the two NPs in terms of mphsg.

Alias - Compatible if one NP is an alias of the other.

Span - Incompatible if one NP bytespan overlap with therot

Binding - Incompatible if the NPs violate conditions di@nsky’s binding theory.

Contraindices - Incompatible if the NPs are separatepregosition or both NPs are non-
pronimal separated by a non-copular verb.

Syntax - Incompatible if the two NP’s have incompatitaéres for Binding, Contraindices,
Span, or MaximalNP.
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45. ProEquiv - Incompatible if both NPs are pronouns, agng@ender, Number and appear in
consecutive sentences.

46. Indefinite - Incompatible ilV P; is an indefinite noun phrase and is not an appositive.
47. Prednom - Compatible if the NPs are in a predicate nonsimastruction.
48. Pronoun - Incompatible iV P; is a pronoun andV 7, is not.

49. ContainsPN - Incompatible if both NPs contain proper esivut also contain no words in
common.

50. Constraints - Compatible if the two NP’s compatible esléor Gender, Number, and do not
have incompatible values for Contraindices, Span, Anim@oynoun and ContainsSpan

51. ProperNoun - Incompatible if both NPs are proper namés mo words in common.
52. Title - Incompatible if one or both NPs are a title.

53. FullStringl - The full text ofV P,.

54. FullString2 - The full text ofV P;.

55. WordNetClass - Compatible if both NPs are members of dineesclass, determined using
WordNet and the NER system.

56. WordNetDist - The WordNet distance between both NPs.
57. WordNetSense - Compatible if both NPs share a WordNetesen

58. Subclass - Compatible if one NP’s WordNet sense is aasdolf the other's WordNet sense.

B Using the System

The following instructions specify how to train and test b@®REF system on the MUC 6 and 7
data. These data sets are already included in the systemaartokcfound in theor ef / dat a
directory.

B.1 Installation, Configuration and Data Preparation

To install the system given you have an accourgfatr ge. ci s. cornel | . edu: % cvs -d
. ext : devel oper nane@f orge. ci s. cornel | . edu: / cvsroot/ coref checkout
The following directories should appear beloaref. src, stable, [ib, bin, config,
data, external Tools, scripts
The following two files need to be changed to match your longlrenment, / ext er nal Tool s/ jwnl / f |
and. /confi g/ coref.cfg.
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The current stable version of the COREF code (which is ale@#nsion of code that generated
the results in this report) can be found undersheabl e directory.

e Inthefil e_properties. xm file, theline:<param nanme="‘di cti onary_path’’
val ue="*/usr/ | ocal / WrdNet-3.0/dict’’/>needs to be changed to point to
your local WordNet dictionary directory.

e Inthecor ef . cf gfile, atthe very least, the fields f6RAI N.DI RECTORY andTRAI N.LFI LELI ST
need to be set to their locations on your machine. An exangief cfg file can be found in
thecor ef / conf i g directory.

Currently, the COREF system imposes a rigid directory stmgcupon its training and testing
files. In thecor ef / dat a directory are several examples of how to format test anditrgidata.
In general, givenV training files, thenV directories need to be created in which each training file
is moved to a directory of its own.

B.1.1 Setting the Classpath

To build and run the system, all the contents of ¢tloe ef / | i b directory must be placed on the
Java classpath.

B.2 Training

Assuming that the classpath is set accordingly, then to the system on MUC 6 or MUC 7 data,
edit theTRAI NLDI RECTORY line in the coref.cfg file to point to the data set you wish &riron
and add the following line to the coref.cfg fil&RAI N.ONLY=t r ue. This last command in the
config file indicates that you simply want to train and savefdaure vectors of the training for
future use in theor ef / WORK directory.

To train execute the following commmand:

j ava - XnxNm Mai n. MJC6Lear ner whereN > 512. The- Xnx flag specifies how large
the Java heap size can grow, and the COREF system requiresimaorthe default amount.

B.3 Testing and Scoring

To test on new data, and score your results, simply removERA¢ N.ONLY line from your config
file and repeat the command for training.

B.3.1 Interpreting the results

After running the system in test mode, you should see linpgsaing in the following format:
3 4436,4435(20641)=8871;0.1555,0.6605=0.2517).5338,0.7041=0.6072;
This is the output of COREF’s scoring module and is integuteh the following manner:

1. The3refers to the iteration of the perceptron updating scheme.

14



2. 4436,4435(20641)=8871; refers to the number of positiegative, excluded and total per-
ceptron updates during this iteration.

3. The next three sets of numbers separated by semi-colertbaiscores of the training set
on three different metrics. The first metric just the Redatgcision and F-measure on the
positive class identification after chain clustering hasrbperformed. The second metric
is the B-cubbed score defined in [1]. The third metric is the ®tbreference task score
defined in [10].

4. The remaining three sets of numbers separated by semgale the same three metrics
applied to the results of the classifier on the test data.
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