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Abstract

An iterative method is developed for the solution of Poisson’s problem on an infi-
nite domain in the presence of interior boundaries held at fixed potential, in three
dimensions. The method combines pre-existing fast multigrid-based Poisson solvers
for data represented on Cartesian grids with the fast multipole method. Interior
boundaries are represented with the embedded boundary formalism. The imple-
mentation is in parallel and uses adaptive mesh refinement. Examples are presented
for a smooth interior boundary for which an analytical result is known, and for an
irregular interior boundary problem. Second-order accuracy in L1 with respect to
the grid size is demonstrated for both problems.

Key words: Poisson problem, fast multipole method, multigrid, embedded
boundary method.

1 Introduction

The Poisson problem is central to a wide variety of applications in compu-
tational physics, from electrostatics to projection methods for incompressible
flow. For gridded data, or grid-mediated point data (e.g., the particle-in-cell
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method) the easily implemented boundary conditions are Dirichlet, Neumann,
or periodic. However, for many problems the most appropriate choice, on phys-
ical grounds, is the infinite domain condition. Solutions to the infinite domain
problem have been estimated using the “easy” boundary conditions in conjunc-
tion with very large computational domains, or with stretched grids, employed
to remove the boundary from the region of interest. Of course such approaches
are only approximate, and can be very demanding of resources especially in
3D. More rigorous boundary potential methods have been developed that de-
termine the inhomogeneous Dirichlet conditions on a finite domain that are
consistent with the desired infinite domain properties [15,13,23,1,17]. These
methods exploit the free-space Green’s function to construct a boundary po-
tential from a set of screening charges.

This work is concerned with an extension of boundary potential methods to
infinite domain Poisson problems that contain also surfaces with fixed poten-
tial. The solution to this combined problem is the superposition of the solution
of an external Dirichlet Laplace problem (e.g., [20]) with the solution to an in-
finite domain Poisson problem constructed without interior boundaries. Such
external Dirichlet Laplace problems involve quadrature of a codimension 1
Fredholm equation with singular kernel, integrated over the interior bound-
ary. This results in a dense matrix equation for the charge density on the
interior surface [16,20], and is similar to the capacitance matrix method of
Hockney and Eastwood [8]. In 2D, the resulting matrix equation is reported
to be well-conditioned for C2 boundaries. However, the present study is con-
cerned with 3D and C0 boundaries where stable and accurate quadratures are
not known. So, instead of pursuing this non-iterative approach an iterative
method based on existing fast solvers is developed.

Consider a three dimensional rectangular domain Ωdom which contains space
charges prescribed through the charge density ρ, and one or more closed re-
gions Ωint with prescribed surface potentials φint. The objective is the solution
Φ to the Poisson problem

∆Φ = ρ (1a)

Φ = φint on ∂Ωint (1b)

Φ(x) ∼ −
Q

4π|x|
as x → ∞, (1c)

where Q =
t

Ωdom
dV ρ.

Boundary conditions on ∂Ωdom are not given explicitly, but have known prop-
erties [22]. The solution has no jump across the domain boundary,[Φ℄ = 0 on ∂Ωdom, (2a)
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Fig. 1. Schematic view of proposed problem. The rectangular computational domain
(Ωdom) contains an interior object (Ωint) whose surface potential φint is fixed. The
volume Ωdom\Ωint may also contain a distribution of space charges ρ. Arrows signify
boundary normal vectors n.

and the surface charge density is zero,[n · ∇Φ℄ = 0 on ∂Ωdom. (2b)

Here n is an inward-directed unit normal vector (see Fig. 1).

Alternatively, one may deduce from the uniqueness of the given problem that
there exists a unique surface potential φdom such that the problem

∆Φ̃ = ρ (3a)

Φ̃ = φint on ∂Ωint (3b)

Φ̃ = φdom on ∂Ωdom (3c)

has solution Φ̃ which coincides with the desired solution Φ at all points interior
to Ωdom.

To understand φdom, consider its relation to the boundary potential method
[15,13]. This method superimposes two solutions, the first being φ given by

∆φ = ρ (4a)

φ = φint on ∂Ωint (4b)

φ = 0 on ∂Ωdom (4c)

in Ωdom. φ = 0 is the continuation of φ outside the domain Ωdom. The ho-
mogeneous Dirichlet boundary condition on the domain boundary implies the
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existence of a surface charge density ̺dom

̺dom = n · ∇φ on ∂Ωdom. (5)

This boundary charge is incompatible with the condition (2b) implied by
problem (1). One could correct the solution φ by subtracting from it the effect
of the boundary charges. The correction potential is

ψ(x) = −
x

∂Ωdom

d2x′G(x|x′)̺dom(x′) x′ on ∂Ωdom, x ∈ Ωdom, (6)

whereG is the appropriate Green’s function, and φ+ψ solves (1). To appreciate
the difficulty of this technique, consider the solution of (6) by establishing a
boundary potential,

φdom(x) = −
x

∂Ωdom

d2x′G(x|x′)̺dom(x′) x,x′ on ∂Ωdom (7)

then continuing this potential to the interior of Ωdom by solving

∆ψ = 0 (8a)

ψ = 0 on ∂Ωint (8b)

ψ = φdom on ∂Ωdom, (8c)

so again φ+ψ solves (1). ψ of (8) is equal to ψ of (6) provided G is the Green’s
function for problem (8).

Through this decomposition it is clear that the Green’s function appearing in
(6) and (7) cannot be the free-space Green’s function,

Gfree(x|x′) = −
1

4π|x − x′|
, (9)

because boundary condition (8b) is not enforced by Gfree. The boundary po-
tential method in the absence of interior boundaries [15,13] uses the free space
Green’s function. An analogous technique for problem (1) would require a
different Green’s function.

The correct Green’s function is constructed through consideration of induced
surface charges. A unit space charge density at x′ will create a potential ev-
erywhere on ∂Ωint. An induced surface charge density must be present on the
surface ∂Ωint whose effect is to zero the potential on that boundary. G(x|x′)
must therefore relate the space charge density at x′ to the measurement point
x, and must also account for the effect of all induced charges:

G(x|x′) = Gfree(x|x′) +
x

∂Ωint

d2x′′Gfree(x|x′′)˜̺int(x
′′|x′), (10)
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where ˜̺int(x
′′|x′) is the induced surface charge density at x′′ due to the unit

space charge density at x′. ˜̺int is determined by applying condition (8b) to
(10), evaluated on the interior boundary:

0 = Gfree(x|x′) +
x

∂Ωint

d2x′′Gfree(x|x′′)˜̺int(x
′′|x′) (11)

∀x on ∂Ωint.

Numerical quadrature of (11) leads to the capacity matrix method [8] and the
boundary integral methods after Mayo and Rokhlin [16,20].

Consideration of (7) with (10) indicates that the boundary potential φdom

could be calculated if the induced interior boundary surface charge density
̺int were known. Conversely, by analogy to (5) the solution to problem (8)
provides ̺int given φdom. The combination of these two observations yields an
iterative scheme for the determination of φdom. This algorithm is stated below
in §2, and demonstrated through an analytical example in §3. In section §4 the
established numerical methods used to implement the algorithm are described
briefly. Second-order accuracy in L1 for C∞ and C0 interior boundaries is
demonstrated in §5.

2 Algorithm

The iterative algorithm proceeds as follows.

I. First, solve the homogeneous Dirichlet domain boundary problem

∆φ = ρ (12a)

φ = φint on ∂Ωint (12b)

φ = 0 on ∂Ωdom. (12c)

II. Second, compute the charge density on the domain boundary and com-
pute an estimated boundary potential by utilizing the free space Green’s
function. The superscript in parenthesis will denote an iteration index.

̺dom = n · ∇φ on ∂Ωdom. (13a)

φ
(0)
dom(x) = −

x

∂Ωdom

d2x′Gfree(x|x′)̺dom(x′). (13b)

Now proceed with iteration index k = 1.
III. Compute the induced charge on the interior boundary. This proceeds by

first solving the Laplace problem (8)

∆ψ(k) = 0 (14a)
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ψ(k) = 0 on ∂Ωint (14b)

ψ(k) = φ
(k−1)
dom on ∂Ωdom, (14c)

where ψ(k) is taken to be zero everywhere within Ωint. The induced surface
charges are then

̺
(k)
int = n · ∇ψ(k) on ∂Ωint. (15)

IV. These induced surface charges modify the boundary potential,

φ
(k)
dom(x) = φ

(0)
dom(x) +

x

∂Ωint

d2x′Gfree(x|x′)̺
(k)
int (x

′). (16)

V. If the boundary potential has converged, the iteration ceases and Φ = φ+
ψ(k). Convergence is assessed by measuring the L2 norm of |φ

(k)
dom−φ

(k−1)
dom |.

Otherwise, k := k + 1 and recompute the induced charge (Step III).

If this algorithm converges, then the domain boundary potential (16) is con-
sistent with the modified Green’s function (10), i.e., (16) is equivalent to

φdom(x) = −
x

∂Ωdom

d2x′G(x|x′)̺dom(x′). (17)

The behavior and convergence properties of the algorithm can be shown with
a small analytical example. In §3 it will be shown that the algorithm outlined
above will fail to converge when the interior boundary and domain boundary
are close (in a sense that will be made clear). One remedy for this convergence
problem is to replace (16) with

φ
(k)
dom(x) = ωφ

(0)
dom(x) + ω

x

∂Ωint

d2x′Gfree(x|x′)̺
(k)
int (x

′) + (18)

(1 − ω)φ
(k−1)
dom (x)

for 0 < ω < 1. (18) has the same stationary point as (16) and enables conver-
gence for essentially any well-resolved geometry where Ωint is contained within
Ωdom.

3 Analytical Example

For an analytical exposition in 3D it is convenient to use spherical geometry.
Let Ωdom be a sphere of radius a > 1, and let Ωint be a concentric sphere of
radius 1, and omit space charges ρ. The potential can at all times be expanded
in spherical harmonics. With three simple observations, the analytical example
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is easily carried out: (i) the spherical harmonic modes are fully decoupled from
one another; (ii) the ℓm spherical harmonic component of the potential varies
with r like αrl + βr−(ℓ+1); and (iii) if the ℓm component of charge density
on a spherical shell of radius r1 is ̺m

ℓ , then the potential due to this charge

density has amplitude φm
ℓ = −

rℓ+2

1

rℓ+1

2

̺m

ℓ

2ℓ+1
evaluated on a spherical shell with

radius r2 ≥ r1.

Let φint have amplitude fm
ℓ in harmonic mode ℓm. The solution to algorithm

step I is

φm
ℓ (r, θ, φ) = fm

ℓ

(

r
a

)ℓ
−

(

a
r

)ℓ+1

(

1
a

)ℓ
−

(

a
1

)ℓ+1 . (19)

Associated with this solution is the domain surface charge density ̺dom and
associated domain surface compensating potential, step II:

̺dom
m
ℓ = −

fm
ℓ

a

(2ℓ+ 1)
(

1
a

)ℓ
−

(

a
1

)ℓ+1 (20a)

φ
(0)
dom

m
ℓ = −fm

ℓ

1
(

1
a

)ℓ
−

(

a
1

)ℓ+1 . (20b)

The general solution to the Laplace problem of step III is

ψ(k)m
ℓ = φ

(k−1)
dom

m
ℓ

(

r
1

)ℓ
−

(

1
r

)ℓ+1

(

a
1

)ℓ
−

(

1
a

)ℓ+1 , (21a)

and the corresponding induced surface charge on the interior boundary is

̺
(k)
int

m
ℓ = φ

(k−1)
dom

m
ℓ

(2ℓ+ 1)
(

a
1

)ℓ
−

(

1
a

)ℓ+1 (21b)

giving a new boundary potential, step IV:

φ
(k)
dom

m
ℓ = φ

(0)
dom

m
ℓ − φ

(k−1)
dom

m
ℓ

1

a2ℓ+1 − 1
. (22)

The sequence (22) converges to

φ∗

dom
m
ℓ = φ

(0)
dom

a2ℓ+1 − 1

a2ℓ+1
= fm

ℓ

aℓ

a2ℓ+1 − 1
(23)

provided a2ℓ+1 > 1. The 00 mode is the slowest to converge, requiring a > 2.
The same conclusion regarding the 00 mode may be drawn through analysis
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of [12, problem 1.6]. The converged correction field ψm
ℓ (21), added to the

initial calculation φm
ℓ (18), gives the exact analytic result Φm

ℓ for the model
problem:

Φm
ℓ (r, θ, φ) = fm

ℓ r
−(ℓ+1). (24)

With the relaxed convergence scheme of (18), algorithm step IV would give

φ
(k)
dom

m
ℓ = ωφ

(0)
dom

m
ℓ − ωφ

(k−1)
dom

m
ℓ

1

a2ℓ+1 − 1
+ (1 − ω)φ

(k−1)
dom

m
ℓ (26)

in place of (22). This sequence converges to (23) for

0 < ω < 2
[

1 − a−(2ℓ+1)
]

. (28)

If a space charge density were included in this example, the potential fields φ
and Φ would differ from the formulae given above by addition of the convo-
lution G ∗ ρ, where the particular Green’s function used here maintains zero
potential on the interior sphere. A particularly efficient solution is given by
the method of images [12, §2.4].

4 Implementation

The numerical method uses a Cartesian grid finite volume approach with cell-
centered data. Complex interior geometries are represented by overlaying the
interior domain on the Cartesian grid. Cut cells are characterized by volume
fraction, cell surface area fractions, and an interface normal vector. The im-
plementation is built using the Chombo library of block-structured data man-
agement and operation tools [5, p. 273]. The treatment of complex geometry
is based on ideas in [14], and has been developed for hyperbolic, parabolic,
and elliptic problems in [4,18,21].

4.1 Poisson solvers

Algorithm steps I and III solve Dirichlet boundary condition Poisson prob-
lems using the second-order accurate approach of [21]. The approach uses
a divergence form of the Laplace operator, with cell-edge fluxes at irregular
domains being computed through specialized high-order stencils. Geometric
multigrid is employed, with graph-based coarsening operators making possible
coarse-grid relaxation at resolutions below which the interior geometry may
be resolved. Additional detail on the stencil operations may be found in [19].
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4.2 Boundary charge calculation

Domain boundary charges (algorithm Step II) are estimated using a one-sided
finite difference approximation to n · ∇φ. When adaptive mesh refinement is
used estimates of surface charge may be available at several grid resolutions.
In that case the values computed at the highest resolution are used, and un-
derlying coarse cell approximations are discarded.

Charges computed on the interior boundary (algorithm Step III) are estimated
in each cell containing an interface. The derivative n ·∇φ is obtained by solv-
ing a least squares problem for the first derivatives, second derivatives, and
the second-order cross derivative terms of φ. The centering point of the Taylor
series is the centroid of the intersection of the interior boundary with the com-
putational cell. This least squares problem uses data from all “regular” cells
(cells that do not contain an interface and are not contained inside the interior
boundary), and that are in a line of sight with the cell in which the gradient
is desired. This last condition eliminates from the least squares fit those data
that are “close”, but which may be separated from the centering point by thin
boundary walls. The least squares problem is solved by Householder QR re-
duction, and the result is stored as a stencil – a set of pairs of weights and cell
coordinates. The relatively expensive stencil construction occurs once in the
method, and each iterative evaluation of algorithm Step III involves a compu-
tationally inexpensive evaluation of the stencil. The interior boundary surface
charge in a cell is proportional to the product of the derivative n · ∇φ with
the area of the interior boundary. As with domain boundaries, with adaptive
mesh refinement the charge may be computed at multiple resolutions. The
values used are obtained at the finest available level of resolution.

4.3 Free space Green’s functions

Algorithm steps II and IV involve computing domain boundary potentials
from surface charge densities. The free-space Green’s function convolution is
solved using an implementation of the fast multipole method (FMM) [7,6,3],
which follows closely the non-adaptive scheme presented in [6] 1 . The rotation
of multipole and local expansions make use of rotation matrices constructed
by the very efficient recursive method of Ivanic and Ruedenberg [10,11] 2 .

The FMM calculates local expansions which represent the potential in a neigh-
borhood from charges well-separated from that neighborhood. Charges that

1 The imaginary exponent in [6, Eq. (7.17)] and [3, Eq. (49)] should be negative.
[7, Eq. (3.60)] is correctly rewritten as [6, Eq. (5.6)] and [3, Eq. (17)].
2 Table 2 is correct in [10] not [11].
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are not well-separated are evaluated by direct calculation, −1/4π|r|. When
calculating the domain boundary potential due to domain boundary charges,
it is necessary to account for the case where the charge and potential are
co-located. This is accomplished using an integral formulation for the po-
tential at a point due to a uniform charge density over a 2D square source
(e.g., [9, Eqs. (4-6)]). All domain potentials computed directly from domain
charges make use of this strategy. If ever an interior boundary charge need
to be transfered directly to an domain boundary potential, a point-to-point
−1/4π|r| calculation is used, the points being respective centroids.

The FMM uses a hierarchy of Cartesian data layouts on a cubic domain. The
finest level of FMM refinement corresponds with a coarsened version of the
Poisson domain, suitably extended to be cubic and have length be a power
of 2. The coarsening is not essential, but improves performance by balancing
the cost of multipole→local operations against the number of direct −1/4π|r|
operations required.

When adaptive mesh refinement is used, the boundary potential is calculated
on all available levels of refinement that abut ∂Ωdom.

5 Results and Conclusions

The first example verifies the method by comparing calculations against ana-
lytical solutions. The interior boundary is a sphere of radius 0.1, centered in a
cubic domain of length 1, resembling the cartoon of Fig. 1. A collection of 200
point charges surround the sphere. Their coordinates are chosen randomly to
lie inside the torus with major radius 0.2 and minor radius 0.05, bisected by
the horizontal midplane of the sphere. The sphere has fixed potential with 00
and 22 spherical harmonic modes (using the real part with Greengard’s choice
of normalization), with magnitude 1 and 10, respectively. The spherical coor-
dinates are rotated relative to the cube in order to break the symmetry of the
problem, via Rz(45◦) ◦ Ry(15◦) ◦ Rz(30◦). The analytic reference solution for
the potential due to the sphere is treated in a straightforward manner. The
Cartesian grid representation of the analytic contribution of the point charges
is more delicate. In each computational cell, an analytical volume average of
the −1/4π|x| potential is calculated for the given charges and for the image
charges used to respect the interior boundary condition. For the numerical
solution, the point charges are distrubuted on the grid using a cloud-in-cell
distribution [2]. Second order convergence in L1 is found (Table 1). In L∞

the convergence is O(h1): an inherent problem of particle-in-cell type meth-
ods. With the point charges omitted, the corresponding Laplace problem is
second-order accurate in all norms (Table 2)
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Table 1
Convergence study for sphere with 200 point charges. Errors are based on analytical
formulas.

1/h L∞ rate L1 rate L2 rate

16 0.151 102 0.175 101 0.209 101

32 0.341 101 2.14 0.145 100 3.60 0.158 100 3.73

64 0.171 101 1.00 0.337 10−1 2.10 0.381 10−1 2.05

128 0.829 100 1.04 0.734 10−2 2.20 0.100 10−1 1.93

Table 2
Convergence study for sphere without point charges. Errors are based on analytical
formulas.

1/h L∞ rate L1 rate L2 rate

16 0.129 102 0.113 100 0.189 100

32 0.335 101 1.95 0.132 10−1 3.10 0.438 10−1 2.11

64 0.126 101 1.41 0.389 10−2 1.76 0.123 10−1 1.83

128 0.237 100 2.41 0.799 10−3 2.29 0.248 10−2 2.31

Fig. 2. Geometry of second test: Franklin’s experiment with a bolt of charge.
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The second example demonstrates the robustness of the method by showing
second order convergence for a case where the interior boundaries are not
smooth. The interior surface is C0 on a set of codimension 2, and C∞ elsewhere.
In some cells containing these C0 regions a sufficiently large stencil of points is
not always available for a second-order computation of the interior boundary
charge. However, since the set of such points is only codimension 2, the overall
solution displays second-order convergence in L1. The interior boundaries are
held at fixed potential φint = 0, and a C0 distribution of space charges ρ is
prescribed (Fig. 2). Because of the proximity of the interior boundaries to the
domain boundary, relaxation is used with ω = 0.7. The convergence results
(Table 3) are second-order in L1 and L2. A rate of order h0 is found for L∞:
this is the expected result for C0 boundaries in L∞ for Poisson’s problem with
the embedded boundary formalism [21, §2.2].

Table 3
Convergence study for C0 geometry. Errors are based on Richardson extrapolation.

1/h L∞ rate L1 rate L2 rate

16 vs. 32 0.231 10−1 0.273 10−3 0.365 10−3

32 vs. 64 0.745 10−3 1.63 0.394 10−4 2.78 0.407 10−4 3.17

64 vs. 128 0.292 10−3 1.35 0.171 10−4 1.22 0.174 10−4 1.22

128 vs. 256 0.289 10−3 0.015 0.335 10−5 2.36 0.342 10−5 2.35

Although the spatial extent of the FMM grid hierarchy (§4.3) may be larger
than the Poisson domain, φ and ψ are not computed on the extended domain.
In this sense the present method is very compact. In contrast, the methods of
[13] and [17] solve fast (FFT-based) Poisson problems on extended domains as
part of their boundary potential calculation. Note that the method presented
here, applied to a problem with no interior domain, solves the same problem
as [13,17], non-iteratively (Φ = φ+ ψ(0)), on a compact domain.

The method presented here may be adapted to solve the infinite domain Pois-
som problem with Neumann boundary conditions on the interior domain.
Three changes are required: (i) φ of step I would have an inhomogeneous
Neumann condition on the interior surface; (ii) ψ(k) of step III would have a
homogeneous Neumann condition on the interior boundary; and (iii) the in-
duced charge distribution on the interior boundary would be a double layer.
Across a double layer the jump in ∂ψ/∂n is zero, thus the potential inside the
interior domain is constant. By application of the divergence theorem, with
there being no charges in Ωint, it follows that the constant must be zero. Fi-
nally, the jump in potential across a double layer gives σ [22, L.15 §2]. With
the interior value of ψ being zero,

σ(x0) = lim
x→x0

−ψ(x)

4π
, x0 on δΩint, (30)
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where the limit is approached from the outside the interior domain. The
Green’s function used to compute the change in boundary potential φ

(k)
dom due

to the double layer is the negative of the normal derivative of the free space
Green’s function. The FMM method is easily adapted to this case [7].
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