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Annual Report on

LLNL Subcontract B548468
Development of Numerical Methods for Various Mathematical Models of High

Speed Reactive and Nonreactive Flow

Donald W. Schwendeman

1 Project Overview

The work carried out under this subcontract involved the development and use of adaptive,
parallel numerical methods for the accurate solution of various mathematical models of high-
speed reactive and nonreactive flows. The current focus is on a model for heterogeneous
solid explosives and on the development of a parallel framework in which to carry out
the numerical calculations of the model equations (and other sets of partial differential
equations). In particular, work has continued on a two-phase, Baer-Nunziato-type model of
reactive flow. At a basic level, the model involves a system of nonlinear hyperbolic partial
differential equations, and numerical methods have been developed to solve the system of
equations accurately. The numerical method is a high-resolution, shock-capturing scheme
of Godunov type and employes a Runge-Kutta type error-control scheme to compute the
stiff source terms in the equations. Adaptive mesh refinement (AMR) is used to resolve fine-
scale features of the two-phase flow, such as a the structure of a detonation wave (including
layers of rapid relaxation between phases), and composite overlapping grids are used to
handle complex flow geometries in either two or three dimensions. An extension of the code
to run in parallel for the reactive and non-reactive Euler equations (and other equations
including those for two-phase reactive flow) has been developed. The code is part of the
Overture-CG software, a collection of codes designed to handle multi-physics applications
(including the OverBlown set of flow solvers [1, 2]). The development has occurred in close
collaboration with Bill Henshaw and Lori Diachin, and other members of the Overture
group within CASC.

During the period of this subcontract, a number of tasks were accomplished, including

• the further development of a numerical method for a model of two-phase reactive flow
in two space dimensions,

• the further development of a parallel method for reactive and non-reactive compress-
ible flow in three dimensions, and

• the completion of a paper on parallel computation of three-dimensional flows using
overlapping grids with adaptive mesh refinement.

These items are discussed in more detail in Section 3 below.

2 Dissemination of Results

Results of the subcontract work were central to the following presentations:



1. “An Augmented Ignition-and-Growth Model that Accounts for Desensitization,” In-
vited lecture at the LANL HE Review Meeting, Los Alamos National Laboratory,
October 4, 2006.

2. “A High-Resolution Godunov Method for Reactive and Nonreactive Multi-Material
Flow on Overlapping Grids,” Invited minisymposium talk at the SIAM Conference
on Computational Science and Engineering, Costa Mesa, CA, February 22, 2007.

3. “Detonation Evolution and Structure for a Model of Two-Phase Reactive Flow,” In-
vited minisymposium talk at ICIAM 07, Zurich, Switzerland, July 19, 2007.

4. “Mathematical Models of Detonation in Single and Multi-Phase Reactive Flow,” In-
vited talk at the AMS Western Section Meeting, Albuquerque, NM, October 13, 2007.

Results of this subcontract and previous ones were central to the following papers:

1. A.K. Kapila, D.W. Schwendeman, J.B. Bdzil and W.D. Henshaw, A study of detona-
tion diffraction in the ignition-and-growth model, Combust. Theory and Modeling, 11
(2007), pp. 781–822.

2. J.W. Banks, D.W. Schwendeman, A.K. Kapila and W.D. Henshaw, A high-resolution
Godunov method for compressible multi-fluid flows on overlapping grids, J. Comput.
Phys., 223 (2007), pp. 262–297.

3. J.W. Banks, D.W. Schwendeman, A.K. Kapila and W.D. Henshaw, A study of det-
onation propagation and diffraction with compliant confinement, Combust. Theory
Modeling, submitted.

4. W.D. Henshaw and D.W. Schwendeman, Parallel computation of three-dimensional
flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys., sub-
mitted.

3 Project Highlights

3.1 A model of two-phase reactive flow

A numerical method for a model of two-phase reactive flow has been developed. The ap-
proach generates well-resolved and accurate solutions economically, and treats rationally the
nozzling terms that render the otherwise hyperbolic model incapable of a conservative rep-
resentation. The method has been used during past years of the subcontract to investigate
a broad range of the parameter space for a particular choice of the reaction-rate model and
for a one-dimensional piston-driven flow. The focus during this past year was to investigate
the behavior of solutions for two-dimensional flows. This study led to a re-examination of
the model and an investigation of more complex reaction-rate models as is discussed below.

3.1.1 Governing equations

In two dimensions, the governing equations of the two-phase model have the form

∂

∂t
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∂
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∂
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ᾱρ̄ū2

ᾱρ̄Ē
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ᾱρ̄ū1
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ᾱρ̄ū1ū2
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−ū2

0
0

+p
+pū2
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Here, α, ρ, (u1, u2) and p denote the volume fraction, density, velocity and pressure of the
gas phase, respectively, and ᾱ, ρ̄, (ū1, ū2) and p̄ denote the analogous quantities of the solid
phase. (The bar superscript is used throughout to indicate solid phase quantities.) The
total energies are given by

E =
p

(1− γ)ρ(1 + bρ)
+

1
2

(
u2

1 + u2
2

)
, Ē =

p̄ + γ̄π̄
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+

1
2

(
ū2

1 + ū2
2

)
+ B(ᾱ) + q,

where γ and γ̄ are ratios of specific heats, b is a virial gas coefficient, π̄ is a solid stiffen-
ing pressure, q is a heat release, and B(ᾱ) is the so-called compaction potential (see [3]).
Following [4], we take

B(ᾱ) =
(p0 − p̄0)(2− ᾱ0)2

ᾱ0ρ̄0 ln(1− ᾱ0)
ln

[(
2− ᾱ0

2− ᾱ

)
(1− ᾱ)(1−ᾱ)/(2−ᾱ)

(1− ᾱ0)(1−ᾱ0)/(2−ᾱ0)

]
,

where p0, p̄0, ᾱ0 and ρ̄0 are given by a reference ambient state. Finally, the volume fractions
satisfy the saturation constraint,

α + ᾱ = 1,

which closes the system of equations.
The first equation in (1) describes the compaction dynamics of the two-phase flow,

while the remaining equations represent the balance of mass, momentum and energy for
each phase. The nozzling terms are the first two terms on the right hand side of (1) and
k(u) gives the exchange of mass, momentum and energy between phases due to compaction,
drag, heat transfer, and chemical reaction (see [5, 3]). The rate of compaction is given by

F = −αᾱ

µc
(p− p̄ + β),



where µc is the compaction viscosity and β = ᾱρ̄B′(ᾱ) is the configuration pressure. The
exchange of mass due to chemical reaction is given by C. The form for C depends on the
assumed reaction kinetics, and two forms have been considered as discussed below. The
exchange of momentum is given by

Mi =
ui + ūi

2
C + δ(ui − ūi), i = 1 or 2,

where δ is a drag coefficient. Finally, the exchange of energy is given by

E =
(

Ē +
β

ρ̄

)
C +

(
δ +

C
2

)
[ū1(u1 − ū1) + ū2(u2 − ū2)] +H(T − T̄ ),

where H is a heat transfer coefficient, and T and T̄ are temperatures of the gas and solid
phases, respectively. These temperatures are given by

CvT =
p

(γ − 1)ρ(1 + bρ)
, C̄vT̄ =

p̄ + γ̄π̄

(γ̄ − 1)ρ̄
,

where Cv and C̄v are specific heats at constant volume.

3.1.2 Reaction rate models

Two reaction rate models have been considered. The first is a relatively simple one-stage,
ignition-pressure model which takes the form

C =

{
0 if p < pig,

−σᾱρ̄(p− pig) if p ≥ pig,

where σ is a rate constant and pig is an ignition pressure. This model was used in [6] to study
detonation evolution and structure in one space dimension. For this study, evolution to
detonation occurred as a result of a relatively low-speed piston impact. In the early stages of
the evolution, a compaction wave develops and the gas pressure rises accordingly. This initial
pressure rise, however, is relatively small (as compared to the values of the gas pressure in
a steady detonation) and thus a correspondingly small value for the ignition pressure, pig,
is required to initiate a reaction for this model. As a result of this small value for pig,
it was found in later two-dimensional corner-turning studies that the detonation showed
a negligible weakening in its post-diffracted state which does not agree with experimental
evidence.

A more complex two-stage reaction rate was developed in part to better model detona-
tion diffraction behavior. It incorporates an “ignition” stage which is following by a “burn”
stage. As the explosive is compressed, it is assumed that the density of hot-spot cites in-
creases with the volume fraction of the solid and with the work supplied to the material
by compaction. If the volume fraction of the solid and the work by compaction exceeds
an assumed threshold, then the ignition reaction is turned on. This reaction, once on, is
assumed to remain active provided the volume fraction of the solid stays above its ambient
value. If the ignition reaction is vigorous enough, i.e. if there is a sufficient density of hot
spots, then a “burn” reaction is assumed to commence which results in the release of the
bulk of the chemical energy via the consumption of the solid grains.



For the two-stage model, an addition “reaction progress” variable is needed. This vari-
able, call it φ say, is governed by the equation

∂φ

∂t
+ ū1

∂φ

∂x1
+ ū2

∂φ

∂x2
= Kign +Kburn,

where (ū1, ū2) is the velocity of the solid phase, and Kign and Kburn are the rates for the
ignition and burn reactions, respectively. For ᾱ > ᾱ0, where ᾱ0 is the ambient value of the
volume fraction of the solid, the rate for the ignition reaction is taken to be

Kign =


σign

[
(ᾱ− ᾱ0)(1− ᾱ)2

(1− ᾱ0)3

]
if T (ᾱ, pF) > 0 or φ > φε,

0 otherwise.

Here, σign is the strength of the ignition rate, φε is a small parameter and T (ᾱ, pF) = 0
defines the ignition threshold boundary. At present, we use

T (ᾱ, pF) =
pF

(pF)ref
−

(
1

ᾱ− ᾱ0
− 1

1− ᾱ0

)
,

where (pF)ref is a reference scale for the work supplied by compaction. The idea is that
initially when φ = 0, the ignition rate is off until T (ᾱ, pF) > 0 first occurs. Once the rate
turns on and φ becomes greater than φε, then the rate remains on until ᾱ drops below ᾱ0.
It is assumed that once the volume fraction of the solid becomes too low (below ᾱ0 say),
the solid grains are too far apart to support ignition due to the formation of hot spots. The
rate for the burn reaction is assumed to have the form

Kburn =

{
σburn (p− pmin) if p > pmin and φ > φmin,

0 otherwise,

where σburn is the strength of the burn rate, and pmin and φmin are switches for the burn
reaction. Finally, the two rates are combined to give

C = −ᾱρ̄ (Kign +Kburn) ,

which appears in the various components of the source term k(u) in (1).

3.1.3 Numerical method and sample results

The numerical approach for the governing equations in (1) with either of the two reaction
rates discussed in section 3.1.2 follows that described in [6, 7] for the two-phase model in
one space dimension. The extension to two-dimensional flow on overlapping grids uses the
approach discussed in [8, 9] for the reactive Euler equations. The discretization takes place
on an overlapping grid which covers the physical domain of interest. The overlapping grid
consists of a collection of curvilinear grids each defined by a mapping from the unit square
in computational space to a portion of the domain in physical space. A discretization of
the governing equations is applied to each component grid in computational space. The



discretization is a second-order Strang-type fractional step method consisting of a “hydro
step” for the equations

∂

∂t
u +

∂

∂xx
f1(u) +

∂

∂x2
f2(u) = h1(u)

∂ᾱ

∂x1
+ h2(u)

∂ᾱ

∂x2
,

and a “source step” for the equations

∂

∂t
u = k(u).

The discretization for the hydro step is a second-order Godunov-type method, and it follows
the approach discussed in detail in [7]. The numerical method for the ordinary differential
equations in the source step uses a second-order Runge-Kutta error-control method. Adap-
tive mesh refinement is also used in the time-stepping procedure to locally increase the
grid resolution. This is particularly apt for the two-phase model whose solutions of interest
posses thin layers of rapid relaxation between the phases as well as rapid chemical reaction,
and posses shocks and contacts in both of the phases.

The images shown Figure 1 illustrate the type of two-phase reactive flow problem under
consideration. In this problem, a steady compaction-led detonation (see [6] for a detailed dis-
cussion of two-phase detonation structures) travels down a rigidly confined two-dimensional
rate stick. At t = 1, the detonation reaches a rate stick of a larger width where it turns
a 90◦ corner into the larger rate stick. The detonation weakens as it diffracts around the
corner, and it is of interest to determine the time-dependent behavior of the detonation in
the post-diffracted state. In particular, it is of interest to determine whether regions of only
partially reacted material, so-called dead zones, remain behind the weakened detonation.
Experimental results indicate that dead zones exist (see [10] for example), and these zones
have been studied using other reactive flow models (see [11] for example). For the present
two-phase flow model, the results shown in the figure employ the two-stage rate discussed
in section 3.1.2. The ambient state of the explosive (with subscript 0), equation-of-state
parameters, and parameters chosen for the relaxation terms and reaction rate are given in
Table 1. Layers of compaction are shown in pink in the images of the volume fraction of
the solid (shown on the left). In the post-diffracted state, the compaction layer thins as
a result of a decoupling of the burn reaction behind it. Behind the weakened compaction
layer, a dead zone appears near the vertical wall of the larger rate stick. In this region, the
gas pressure (shown in the images on the right) is too low to support the burn reaction.
The results shown here are preliminary and more work is needed to study the solutions in
detail and to refine the model.

3.2 Parallel computation of three-dimensional flow

A numerical approach has been developed for the parallel computation of three-dimensional
flow (and other problems) on overlapping grids with adaptive mesh refinement (AMR).
The numerical approach is implemented on parallel distributed-memory computers using
a domain-decomposition approach. The implementation is flexible so that each base grid
within the overlapping grid structure and its associated refinement grids can be indepen-
dently partitioned over a chosen set of processors. The partitioning is specified to balance
the computational work across the processors, and this is done using a modified bin-packing



Figure 1: Shaded contours of the volume fraction of solid (left) and the gas pressure (right)
for t = 1.0 (top), t = 2.5 (middle) and t = 4.5 (bottom).



Param. Value Param. Value Param. Value
ᾱ0 0.73 γ̄ 5 δ 20.
ρ̄0 5.0293 π̄ 0.16021 µc 0.05
p̄0 3.5682e−4 C̄v 0.625 H 0.2
T̄0 1.2770e−2 q 0.11795 σign 2.7
ρ0 2.6470e−3 γ 1.35 σburn 6.0
p0 1.1843e−5 b 0.37778 pmin 0.5
T0 1.2770e−2 Cv 1 φmin 0.2

Table 1: Dimensionless parameters and their corresponding values for the corner-turning
problem. The references scales are the same as those used in [6]. The values in the left
two pairs of columns correspond to those for a representative PBX-type explosive, while
the values in the right column are modeling choices.

algorithm. All elements of the AMR algorithm, such as error estimation, regridding, and
interpolation, are performed in parallel. The approach developed may be used to com-
pute the numerical solution of a wide range of initial-boundary-value problems (IBVPs) for
partial differential equations. Details of the numerical approach are discussed in [12]. In
that paper, IBVPs for two specific equations are discussed. The first is a linear advection-
diffusion equation, and the second is the (nonlinear) reactive Euler equations. The first
equation provides a useful test case to study the behavior of the numerical approach and to
verify its accuracy quantitatively, while the second builds on the earlier work in [13, 14] and
illustrates the numerical approach for a more difficult set of equations. For the purposes of
this report, an overview of the numerical approach is given and some sample calculations
from [12] are discussed.

3.2.1 Reactive Euler equations and numerical discretization

The numerical approach is illustrated for reactive and non-reactive flow in three-dimensions.
Here, we assume inviscid compressible flow and consider the reactive Euler equations given
by
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where

u =


ρ
ρv
E
ρY

 , fn =


ρvn

ρvnv + pen

vn(E + p)
ρvnY

 , n = 1, 2, 3, h =


0
0
0

ρR

 .

The symbols here have their usual meaning, namely, ρ is density, v = (v1, v2, v3) is velocity,
p is pressure and E is the total energy. For the reactive case, the flow is a mixture of mr

species whose mass fractions are given by Y. The source term models the chemical reactions
and is described by a set of mr rates of species production given by R = R(u). The total
energy is taken to be

E =
p

γ − 1
+

1
2
ρ|v|2 + ρq,



where γ is the ratio of specific heats and q = q(Y) represents the heat energy due to chemical
reaction. The number of components in the equations is m = 5 + mr, but this reduces to
m = 5 for the non-reactive case where we omit the mr species equations in (2). The initial
conditions for the equations are u(x, 0) = u0(x) and the boundary conditions consist of
inflow, outflow or solid-wall conditions as needed for each specific problem considered.

The discretization of the reactive Euler equations in (2) follows that discussed previously
in the context of two-phase flow. For each component grid there is a known mapping
x = Cg(r) from physical space x to parameter space r ∈ [0, 1]3. In parameter space, the
equations become
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where J is the Jacobian of the transformation matrix [xr] and the mapped fluxes (f̂1, f̂2, f̂3)
are given in terms of the original flux functions by

f̂α(u) = sα,1f1(u) + sα,2f2(u) + sα,3f3(u), α = 1, 2, 3.

Here, the metrics si,j are components of the matrix S = J [rx] = J [xr]−1, i.e.
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 , etc.

The mapped flux f̂α(u) represents the flux of u across the surface rα = constant. Finally,
the source term h(u) in the mapped equations is unchanged from the original set.

The mapped equations are discretized on a uniform grid with grid spacings ∆rα, α =
1, 2, 3. Let

Ui(t) =
1

∆r1∆r2∆r3

∫∫∫
Vi

u(r, t) dr

denote the average of u over a grid cell Vi of width (∆r1,∆r2,∆r3) about the point ri. The
cell average of u is advanced from a time t to t + ∆t using the second-order fractional-step
method

Ui(t + ∆t) = Sh(∆t/2)Sf (∆t)Sh(∆t/2)Ui(t),

where Sh and Sf are operators representing discretizations of the source term and the hy-
drodynamic terms of the mapped equations, respectively, and where ∆t is a global time
step determined for all component grids by a CFL condition. The integration of the source
term is handled with a Runge-Kutta error-control scheme and the integration of the hydro-
dynamic terms are performed using a second-order extension of Godunov’s method with an
approximate Riemann solver.

3.2.2 Parallel framework

The parallel framework is a domain-decomposition approach in which each component grid
belonging to the overlapping grid is partitioned across different processors of a distributed-
memory parallel computer as illustrated in Figure 2. The sample overlapping grid in the



figure, shown in two dimensions for simplicity, consists of component grids labeled G1 and
G2 at the base level, with G2 cutting a hole in G1, and refinement grids labeled G3 and G4.
Each component grid is partitioned over a contiguous range of processors, e.g. p = {3, 4, 5}
for G3. Grid functions defined on each component grid are partitioned in the same way
as their component grid. Field data in a grid function, which may be distributed across
several processors, is stored in a multidimensional P++ array. The P++ array, as described
below, handles the updating of field data at ghost points associated with internal boundaries
between processors. In addition, communication is needed between processors to update
interpolation points at the overlap between grids (the grid points marked with small squares
in Figure 2) and to handle AMR interpolation involving values on refinement grids.

Figure 2: Sample overlapping grid showing a partition of base grids, G1 and G2, and a
partition of refinement grids, G3 and G4, for parallel computation.

A basic tool for the parallel approach is the P++ array class [15], a C++ class that
can be used to represent distributed multi-dimensional arrays. Each P++ array can be
independently partitioned across a set of processors. A distributed P++ array consists
of a set of serial arrays, one serial array for each processor. Each serial array is a multi-
dimensional array that can be manipulated using various array operations. The data from
a serial array can also be passed to Fortran subroutines, which is useful to define optimized
computational kernels, such as the discretization of the reactive Euler equations representing
an integration over a time step. When running in parallel, the serial arrays contain extra
ghost values that hold copies of the data from the serial arrays on neighboring processors.
The P++ array class is built on top of the Multiblock PARTI parallel communication
library [16], which is used for updating the values on ghost boundaries from neighboring
processors. All parallel communication is performed using the Message Passing Interface,
MPI [17]. Further details of the parallel approach, including the parallel interpolation at grid
overlaps, AMR regridding and interpolation, and method of load balancing are discussed in
[12].

3.2.3 Sample results

Two problems involving three-dimensional reactive and non-reactive flow are presented
in [12]. The first problem involves planar shock diffraction by a sphere, while the second
considers the initiation and propagation of a detonation in a T-shaped pipe. As an example,



Figure 3: Shaded contours of density for the quarter-sphere problem at t = 0.6 (top left)
and t = 1.4 (top right) with corresponding refinement-grid structure shown below each
contour plot.

Figure 3 shows the density and the corresponding refinement grid structure of the solution
of the shock-diffraction problem at two different times during the interaction of the shock
with the solid sphere. This particular calculation was run using AMR with 2 refinement
grid levels and using 32 processors. The parallel performance of the implementation was
studied using a range of grids and number of processors. For example, Table 2 shows strong
scaling results for calculations with no AMR. For each run, the overlapping grid is fixed,
while the number of processors is increased from 1 to 64. The table lists the number of grids
points, N (k)

point, number of processors, N
(k)
proc, points per processor, and the number of time

steps taken, N (k)
step, for each run k. For each run, the CPU time per step, Tk (in seconds), is

recorded and listed in the table, as well as the parallel scale factor, Sk which is computed
using

Sk =
T ∗

0

T ∗
k

, where T ∗
k =

Tk

N (k)
point/N

(k)
proc

.

Ideally, Sk = 1, but since there is a cost associated with the communication between
processors Sk < 1. The table indicates good parallel scaling of the code for the shock
diffraction problem. Further scaling results are given in [12].



k N (k)
point N

(k)
proc N (k)

point/N
(k)
proc N (k)

step Tk Sk

0 2.01e+6 1 2.01e+6 617 15.2 1.00
1 2.01e+6 2 1.00e+6 617 7.77 0.98
2 2.01e+6 4 5.02e+5 617 3.96 0.96
3 2.01e+6 8 2.51e+5 617 2.09 0.91
4 2.01e+6 16 1.26e+5 617 1.09 0.87
5 2.01e+6 32 6.27e+4 617 0.587 0.81
6 2.01e+6 64 3.14e+4 617 0.341 0.70

Table 2: Strong scaling results for the calculation of shock diffraction by a sphere with no
AMR. The is the CPU time in seconds per step is given by Tk. The parallel scaling factor
Sk should be 1 for perfect parallel scaling.

4 Concluding Remarks

Work has continued on the development and use of adaptive numerical methods for the
accurate calculation of various mathematical models of high-speed reactive and nonreactive
flow. This work has focused on a two-phase reactive flow model. In addition, a parallel
framework has been implemented to compute the solution of partial differential equations
on overlapping grids with adaptive mesh refinement. The parallel framework has been
used to compute solutions of the reactive and non-reactive Euler equations in three space
dimensions [12], and solutions of the equations for two-phase reactive flow in two space
dimensions (and other sets of partial differential equations).
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