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1. Executive Summary 
This report details our research into parallel, out-of-core graph storage and analysis systems.  The major 
foci for this funding period were investigating the scaling of our middleware framework, Massive Scale 
Semantic Graphs, and the development of a bidirectional breadth-first search kernel using the framework.  
MSSG (1) is a distributed-memory, extensible middleware framework for out-of-core graph analysis; (2) 
supports streaming updates with very low fragmentation; (3) supports scale-free graphs with very low disk 
space overhead; and (4) allows the reuse of computing resources by targeting commodity clusters. We 
have used MSSG to store and search massive synthetic graphs with hundreds of billions of edges with 
excellent performance.  Specifically, using a 61-node commodity cluster and our high-performance, 
bidirectional breadth-first search kernel, we can search a graph with 120 billion edges with 91% of 
searches finishing in under one minute.  This is comparable to the results on the expensive Netezza 
datawarehouse appliance with 640 processors. 

2. Project Motivation 
The study of large-scale complex networks is a field which is seeing rapid growth. Graphs are useful tools 
to model network systems of all kinds. From the relationships between biological taxa, proteins in 
organisms, and people in various communities, graphs are a natural method used to understand a huge 
array of different data sets [12, 13, 17–20]. 

Many of these fields are generating ever-increasing graph sizes which are impossible to run in memory on 
even distributed-memory cluster architectures. For example, Kolda et al. [12] reported that the Department 
of Homeland Security will soon utilize social networks with 1015 vertices. It is therefore necessary to move 
to an out-of-core algorithm in order to support these increasingly intractable data sizes. 

Many of these real-world graphs can be classified as scale-free graphs. Scale-free graphs exhibit certain 
interesting properties [4]. Most notably, vertices in a scale-free graph have a degree distribution which 
decays as a power law. Also, scale-free graphs have a set of very highly connected vertices which form the 
core of the graph. These vertices are known as hubs and are a consequence of the preferential attachment 
typically found in the processes which create scale-free graphs. The Internet webpage graph is a well-
known example which exhibits these properties. Social networks have also been found to be scale-free 
graphs. These facts differentiate scale-free graphs from those which follow the venerable Erdos-Reyni 
(ER) graph model where the vertex degrees are random and uniform. 

The design of a database system to store and search massive graphs forces some difficult problems to be 
addressed. The most pressing problem is that of the irregular nature of the data access. Since the breadth-
first vertex traversal order is not known a-priori, the disk access must be as efficient as possible. Randomly 
accessing the graph data on disk is an extremely inefficient solution and great pains must be taken to avoid 
this pitfall. Additionally, since the vertex set does not fit into memory, the level marks made during the 
breadth-first search must also be stored on disk, further exacerbating the disk bottleneck. In this paper, we 
present some novel solutions for mitigating these problems by leveraging specific properties of the scale-
free graphs and the search algorithm itself. 



Although in the literature there are various parallel graph algorithms [3, 10, 11, 20], and out-of-core (also 
called external memory) algorithms [1, 2, 7, 8, 14, 16], the practical work that combines both are rare, and 
recent [9, 15]. However, neither of these works was able to present as impressive results as [21], which 
utilizes a specialized datawarehouse appliance with 640 processors and FPGA technology, for massively 
large graphs. Our goal for this research was to design and develop a practical system with commodity 
hardware that costs a fraction of this specialized datawarehouse appliance and produce comparable or 
better results. 

3. Technical Approach (include relevant ties to LLNL) 
The MSSG framework is designed to provide storage, retrieval and processing of large scale-free graphs. It 
consists of one or more front-end nodes which provide an entry point for the user queries as well as graph 
data ingestion, and a set of back-end nodes that are responsible for storing and processing the graph data 
(Figure 1). MSSG has been built on top of DataCutter [5, 6] and its functionality is provided by a set of 
modular, customizable services implemented as DataCutter components and pluggable interfaces. The 
architecture of MSSG is discussed in more detail in [9]. 

 
In order to take advantage of I/O parallelism and to fully utilize aggregate disk storage, our system 
partitions and declusters the graph data to multiple nodes of the cluster during the ingestion of the data. 
The actual insertion of graph data into grDB, our out-of-core graph datastructure, is done as follows. The 
overall storage system will consist of ingestion nodes and database nodes. During graph ingestion, the 
ingestion nodes will partition and decluster the incoming graph edges and distribute them to the database 
nodes for storage in grDB. The actual declustering function is configurable, and can be chosen from simple 
vertex id modulo partitioning, round-robin edge partitioning, and a special hub-based partitioning. As 
noted previously, scale-free graphs have a set of highly connected vertices called hubs which form the core 

Figure 1: MSSG System Architecture 



of the graph. grDB is able to handle hub vertices specially in order to better balance the load across the 
processors during search operations. Since searches which reach certain path lengths are likely to visit a 
hub vertex, it makes sense to spread the hub adjacency list information over all of the database nodes. 
Doing so takes advantage of the large aggregate parallel I/O throughput available. However, the vast 
majority of the vertices in the graph have reasonable-sized adjacency lists. To enable global knowledge of 
where each vertex's adjacency list is stored, we utilize simple vertex id modulo partitioning for those 
vertices not designated as hubs.  This avoids expensive out-of-core hashtable lookups to determine which 
processor owns which vertex.  Combining these two partitioning ideas forms the basis for our hub-based, 
hybrid partitioning. 

In this work, our goal was to develop an out-of-core algorithm for efficient source-destination searches (s 
− d searches) based on breadth-first search (BFS). At the highest level, there are basically two possible 
variants of BFS: unidirectional and bidirectional. Scale-free graphs, which this work specifically targets, 
have small diameters and as such large graph searches using a unidirectional search will suffer from 
extremely large fringe sizes. Yoo et.al. [20] also report that distributed memory parallel bidirectional 
search outperforms unidirectional search. Therefore, in this work, we have chosen to employ a 
bidirectional breadth-first search strategy. In bidirectional search, two unidirectional breadth-first searches 
are started: one begins at the source vertex s, as in the unidirectional search, and a second begins at the 
destination vertex d and essentially runs in reverse. 

There are two stages to our bidirectional breadth-first search algorithm. Stage one (Algorithm 2, see next 
page) looks up the adjacent vertices of the vertices in the fringe. These adjacent vertices are then sent to 
the processors which own them, to be inserted into the next-level fringe and expanded later. Stage one will 
run for both the forward and backward fringes on each processor in turn. 

This lookup operation proceeds in as disk-seek sparing a manner as possible. We use a simple buffered, 
external-memory queue as a fringe data structure. We sort the fringe vertices and request their adjacent 
vertices one-by-one from the grDB database. The time spent sorting the fringe window is easily earned 
back while avoiding excessively random disk accesses. We also aggregate and sort the fringe vertex 
adjacency lists in order to reduce the random-access pattern imposed on any out-of-core vertex level mark 
data structure. 

Stage two (Algorithm 3) inserts the incoming fringe portions from other processors into the local 
processor’s fringe. Each incoming fringe vertex is checked to see if this processor has previously visited 
this vertex. If so, then a fringe overlap point has been found, and a path has been found from the source 
vertex to the target vertex. The length of the path found may not be optimal, depending on the search level. 
If the path length is not guaranteed to be optimal, the insertion of vertices into the local processor’s fringe 
continues until either an optimal path length is found, or no more incoming fringe chunks need to be 
inserted into the local fringe. If any path was found, even if it was not previously optimal, the processor 
can now trigger exit from the algorithm. 



 

 

 



 

Algorithm 1 is the algorithm which encapsulates the bidirectional breadth-first search design decisions 
discussed up until this point. In addition to early termination of the search during insertion of the incoming 
fringe buffers, it includes early termination of the search while expanding the fringe vertices. We call this 
algorithm ‘all-terminate’ since any of the processors can terminate the search, not just the processor which 
‘owns’ the vertex. This is the case, since all processors store a visit level for all the vertices it touches 
during expansion of fringe vertices, not just those which are assigned to the processor itself. We will refer 
to this algorithm as AT. 

As part of the analysis of the preceding algorithm, we also implemented a version of the bidirectional 
breadth-first search where all of the search termination was handled by the owner of the vertices involved 
in the overlapping search fringes. That is, the search is only stopped once the owner of the vertex in the 
overlapping search fringes receives the vertex from its own expansion or from another processor in both 
directions. We will refer to this algorithm as OT. 

This OT algorithm has several distinct advantages over the AT algorithm. It is simpler conceptually, since 
there is very little chance for early termination of the search. It also allows the vertex level data structure to 
be smaller proportional to the number of database nodes in the system, since each node involved in the 
computation need only store vertex level marks for those vertices it owns. 

Thus, we present Algorithm 4 which is the version of the algorithm which relies on the owner of the fringe 
overlap vertex to terminate the search. It is essentially the same as Algorithm 1, with the exception that the 
ExpandFringe function does not return an lpath value. The OT version uses the simple vertex level data 
structure which allows full, immediate access to the vertex level information, at the cost of random-access 
time. 



 

 

 



4. Research or Other Technical Results 
We carried out the experimental evaluation of the framework and the bidirectional, breadth-first search 
algorithms on a 61-node Linux cluster. Each node of the cluster is equipped with dual 2.4 GHz Opteron 
250 processors, 8 GB of RAM and two 250 GB SATA drives providing 500 GB of local storage via 
software RAID0. The nodes are interconnected with switched gigabit Ethernet and Infiniband. 

The tests were performed using the hub-based, hybrid partitioning during ingestion. To increase the 
parallelism of disk access when accessing the high degree hub vertices, the hub vertex adjacency lists were 
distributed to all of the database nodes. So the ownership of the hub vertices is shared among all of the 
database nodes. The non-hub vertices (by far the lion’s share of the total vertex set) are partitioned with 
modulo partitioning, for efficiency. 

The experiments were carried out with four different scale-free graphs. A small subset of the Pubmed 
graph (PubmedS) was used in the experiments carried out on one node, and the full Pubmed graph 
(PubmedL) was used to run some of the experiments on 8 nodes. Next, we created two graphs by using the 
method described in the preceding section, one with 40 billion directed edges (40B), and one with 120 
billion directed edges (120B). PubmedS has 3,751,921 vertices,  l while PubmedL has 26,676,177 vertices. 
For the larger graphs, we simply created copies of PubmedL and added 20% random edges in such a way 
as to preserve the scale-free properties of the original graph. With 61 copies of PubmedL in the 40 billion 
edge graph, that makes 1,627,246,797 vertices. The 120 billion edge graph has 183 copies of PubmedL, 
making 4,881,740,391 vertices. 

Our framework supports multiple front-end ingestion nodes during the graph ingestion phase. Each 
ingestion node reads the raw graph edge files, partitions the data according to a configurable declustering 
method, and distributes the data to the database nodes. Upon receipt of the graph edges, the database node 
stores them to the local grDB instance. The use of multiple ingestion points facilitates quick graph 
ingestion and allows all of the database nodes to continuously store data without stalling waiting for data 
from the ingestion node. 

Our first set of experiments explored grDB’s disk block usage efficiency. Figure 2 shows these results. The 
experiments were performed by ingesting PubmedS onto a single database node, and examining the grDB 
file level usage. For this graph and database configuration, the file level with 32 K ‘slots’ for adjacency 
data was only at 2.7% total usage. Since 32 K ‘slots’ used 256 KB of actual disk space, that represented a 
lot of wasted space. 

 
Figure 2 shows the effect of the addition of different file levels on the disk block occupancy. The baseline 
file level sub-block sizes are 2, 4, 16, 256, 32 K, and 256 K. We performed 8 experiments, and tried 
adding an extra level with block sizes varying from 32 to 16K. Beginning with the baseline 5 file levels, 

Figure 2: Effect on the occupancy of the 
grDB file levels with the addition of an 
extra grDB file level 



each of the bars represents one of these 8 configurations of the grDB file-system. File levels 2, 4, 16, and 
256 K were not affected at all by any combination of extra file levels, and thus, on the x-axis, we only 
present file utilization for sub-block sizes 256, 32 K and for the extra file level we added. For instance, the 
addition of file level with sub-block size 128 caused the 256 sub-block file level utilization to spike up to 
70%. However, the addition of that file level did nothing to reduce the abysmal 2.7% total usage for the 32 
K sized sub-block file level. It is clear that some trial and error must be employed to find the file-level 
configuration appropriate for each application. 

 

Figure 3 shows the motivation behind partitioning the hub vertices’ adjacency list information amongst all 
of the processors in the system. This experiment was conducted by inserting PubmedL into 8 database 
nodes with various graph partition types. The chart series SD modulo and BD modulo represent 
unidirectional and bidirectional breadth-first searches with using only modulo vertex partitioning. As seen 
in the figure, the bidirectional search clearly outperforms unidirectional search. It is clear from the chart 
that the hub vertex partitioning (named “BD hub”) has a positive effect on the search performance. 

One of the major benefits of grDB in this type of external memory graph database is its flexibility in 
writing vertex adjacency information to disk with a minimum of fragmentation overhead. The effect on 
search performance of using grDB versus an optimally written contiguous graph adjacency list is shown in 
Figure 4. The Compressed Adjacency List format represents the smallest on-disk representation possible if 
the entire graph were known a-priori. During the search, there is no need to perform any more IO than 
strictly necessary to retrieve vertices’ neighbors, and furthermore each access to adjacency list only 
requires a single seek. In grDB, however, the adjacency list is partitioned into multiple sub-blocks which 
can require multiple seeks and also incurs additional I/O. As is seen in the figure, however, both of the 
schemes have similar execution time trends, and the performance difference between them is not large. 
While the compressed adjacency list provides better execution time, it is not useful for the target 
application where the graphs gets streaming updates. The cost of reshuffling the entire database every time 
a new set of edges is added would be prohibitive for the compressed adjacency list database. By design, 
grDB does not require any shuffling for incremental updates. 

Figure 3: Performance of various partitioning 
types on PubmedL 



 

Figure 5 shows the results of running the bidirectional, breadth-first search kernel on the 40 billion and 120 
billion edge graphs with 16 and 61 nodes, respectively. This figure shows that the performance of MSSG 
scales well both with respect to graph size and number of nodes. More than 91% of the total searches 
performed on these databases were complete within one minute. 

 

5. Papers and Book Chapters Supported in Part by the Subcontract 
 

Timothy D. R. Hartley, Umit V. Catalyurek and Andy Yoo, “Storing and Searching Massive 
Scale-Free Graphs”, Poster in Supercomputing 2007 (SC’07), Reno, NV, 2007. 

My advisee Timothy Hartley was awarded second place in the ACM-sponsored Student Research 
Competition at SC’07 for the above work.  

Figure 4: Comparison of optimal clustering vs grDB 
for PubmedS 

Figure 5: Search Performance on 40 billion and 120 billion 
edge graphs 
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