
The Ohio State University Research Foundation
1960 Kenny Road
Columbus, OH 43210

Final Report for “Massive-Scale Semantic Graphs (MSSG)”

Submitted by:
Umit V. Catalyurek
Associate Professor

FINAL REPORT
For the period ending 11/30/2007

Prepared for:
University of California
Lawrence Livermore National Laboratory
Attn: Linda Becker
P.O. Box 808, L-419
Livermore, CA 94551

Under
B541059
University # 60009508

Date prepared 1/9/2008

DISCLAIMER
This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Work performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

Final Report on

LLNL Subcontract B541059
Massive-Scale Semantic Graphs (MSSG)

PI: Umit V. Catalyurek

LLNL Contract Technical Contact: Andy Yoo

1. Executive Summary
This report details our research into parallel, out-of-core graph storage and analysis systems. The major
foci for this funding period were investigating the scaling of our middleware framework, Massive Scale
Semantic Graphs, and the development of a bidirectional breadth-first search kernel using the framework.
MSSG (1) is a distributed-memory, extensible middleware framework for out-of-core graph analysis; (2)
supports streaming updates with very low fragmentation; (3) supports scale-free graphs with very low disk
space overhead; and (4) allows the reuse of computing resources by targeting commodity clusters. We
have used MSSG to store and search massive synthetic graphs with hundreds of billions of edges with
excellent performance. Specifically, using a 61-node commodity cluster and our high-performance,
bidirectional breadth-first search kernel, we can search a graph with 120 billion edges with 91% of
searches finishing in under one minute. This is comparable to the results on the expensive Netezza
datawarehouse appliance with 640 processors.

2. Project Motivation
The study of large-scale complex networks is a field which is seeing rapid growth. Graphs are useful tools
to model network systems of all kinds. From the relationships between biological taxa, proteins in
organisms, and people in various communities, graphs are a natural method used to understand a huge
array of different data sets [12, 13, 17–20].

Many of these fields are generating ever-increasing graph sizes which are impossible to run in memory on
even distributed-memory cluster architectures. For example, Kolda et al. [12] reported that the Department
of Homeland Security will soon utilize social networks with 1015 vertices. It is therefore necessary to move
to an out-of-core algorithm in order to support these increasingly intractable data sizes.

Many of these real-world graphs can be classified as scale-free graphs. Scale-free graphs exhibit certain
interesting properties [4]. Most notably, vertices in a scale-free graph have a degree distribution which
decays as a power law. Also, scale-free graphs have a set of very highly connected vertices which form the
core of the graph. These vertices are known as hubs and are a consequence of the preferential attachment
typically found in the processes which create scale-free graphs. The Internet webpage graph is a well-
known example which exhibits these properties. Social networks have also been found to be scale-free
graphs. These facts differentiate scale-free graphs from those which follow the venerable Erdos-Reyni
(ER) graph model where the vertex degrees are random and uniform.

The design of a database system to store and search massive graphs forces some difficult problems to be
addressed. The most pressing problem is that of the irregular nature of the data access. Since the breadth-
first vertex traversal order is not known a-priori, the disk access must be as efficient as possible. Randomly
accessing the graph data on disk is an extremely inefficient solution and great pains must be taken to avoid
this pitfall. Additionally, since the vertex set does not fit into memory, the level marks made during the
breadth-first search must also be stored on disk, further exacerbating the disk bottleneck. In this paper, we
present some novel solutions for mitigating these problems by leveraging specific properties of the scale-
free graphs and the search algorithm itself.

Although in the literature there are various parallel graph algorithms [3, 10, 11, 20], and out-of-core (also
called external memory) algorithms [1, 2, 7, 8, 14, 16], the practical work that combines both are rare, and
recent [9, 15]. However, neither of these works was able to present as impressive results as [21], which
utilizes a specialized datawarehouse appliance with 640 processors and FPGA technology, for massively
large graphs. Our goal for this research was to design and develop a practical system with commodity
hardware that costs a fraction of this specialized datawarehouse appliance and produce comparable or
better results.

3. Technical Approach (include relevant ties to LLNL)
The MSSG framework is designed to provide storage, retrieval and processing of large scale-free graphs. It
consists of one or more front-end nodes which provide an entry point for the user queries as well as graph
data ingestion, and a set of back-end nodes that are responsible for storing and processing the graph data
(Figure 1). MSSG has been built on top of DataCutter [5, 6] and its functionality is provided by a set of
modular, customizable services implemented as DataCutter components and pluggable interfaces. The
architecture of MSSG is discussed in more detail in [9].

In order to take advantage of I/O parallelism and to fully utilize aggregate disk storage, our system
partitions and declusters the graph data to multiple nodes of the cluster during the ingestion of the data.
The actual insertion of graph data into grDB, our out-of-core graph datastructure, is done as follows. The
overall storage system will consist of ingestion nodes and database nodes. During graph ingestion, the
ingestion nodes will partition and decluster the incoming graph edges and distribute them to the database
nodes for storage in grDB. The actual declustering function is configurable, and can be chosen from simple
vertex id modulo partitioning, round-robin edge partitioning, and a special hub-based partitioning. As
noted previously, scale-free graphs have a set of highly connected vertices called hubs which form the core

Figure 1: MSSG System Architecture

of the graph. grDB is able to handle hub vertices specially in order to better balance the load across the
processors during search operations. Since searches which reach certain path lengths are likely to visit a
hub vertex, it makes sense to spread the hub adjacency list information over all of the database nodes.
Doing so takes advantage of the large aggregate parallel I/O throughput available. However, the vast
majority of the vertices in the graph have reasonable-sized adjacency lists. To enable global knowledge of
where each vertex's adjacency list is stored, we utilize simple vertex id modulo partitioning for those
vertices not designated as hubs. This avoids expensive out-of-core hashtable lookups to determine which
processor owns which vertex. Combining these two partitioning ideas forms the basis for our hub-based,
hybrid partitioning.

In this work, our goal was to develop an out-of-core algorithm for efficient source-destination searches (s
− d searches) based on breadth-first search (BFS). At the highest level, there are basically two possible
variants of BFS: unidirectional and bidirectional. Scale-free graphs, which this work specifically targets,
have small diameters and as such large graph searches using a unidirectional search will suffer from
extremely large fringe sizes. Yoo et.al. [20] also report that distributed memory parallel bidirectional
search outperforms unidirectional search. Therefore, in this work, we have chosen to employ a
bidirectional breadth-first search strategy. In bidirectional search, two unidirectional breadth-first searches
are started: one begins at the source vertex s, as in the unidirectional search, and a second begins at the
destination vertex d and essentially runs in reverse.

There are two stages to our bidirectional breadth-first search algorithm. Stage one (Algorithm 2, see next
page) looks up the adjacent vertices of the vertices in the fringe. These adjacent vertices are then sent to
the processors which own them, to be inserted into the next-level fringe and expanded later. Stage one will
run for both the forward and backward fringes on each processor in turn.

This lookup operation proceeds in as disk-seek sparing a manner as possible. We use a simple buffered,
external-memory queue as a fringe data structure. We sort the fringe vertices and request their adjacent
vertices one-by-one from the grDB database. The time spent sorting the fringe window is easily earned
back while avoiding excessively random disk accesses. We also aggregate and sort the fringe vertex
adjacency lists in order to reduce the random-access pattern imposed on any out-of-core vertex level mark
data structure.

Stage two (Algorithm 3) inserts the incoming fringe portions from other processors into the local
processor’s fringe. Each incoming fringe vertex is checked to see if this processor has previously visited
this vertex. If so, then a fringe overlap point has been found, and a path has been found from the source
vertex to the target vertex. The length of the path found may not be optimal, depending on the search level.
If the path length is not guaranteed to be optimal, the insertion of vertices into the local processor’s fringe
continues until either an optimal path length is found, or no more incoming fringe chunks need to be
inserted into the local fringe. If any path was found, even if it was not previously optimal, the processor
can now trigger exit from the algorithm.

Algorithm 1 is the algorithm which encapsulates the bidirectional breadth-first search design decisions
discussed up until this point. In addition to early termination of the search during insertion of the incoming
fringe buffers, it includes early termination of the search while expanding the fringe vertices. We call this
algorithm ‘all-terminate’ since any of the processors can terminate the search, not just the processor which
‘owns’ the vertex. This is the case, since all processors store a visit level for all the vertices it touches
during expansion of fringe vertices, not just those which are assigned to the processor itself. We will refer
to this algorithm as AT.

As part of the analysis of the preceding algorithm, we also implemented a version of the bidirectional
breadth-first search where all of the search termination was handled by the owner of the vertices involved
in the overlapping search fringes. That is, the search is only stopped once the owner of the vertex in the
overlapping search fringes receives the vertex from its own expansion or from another processor in both
directions. We will refer to this algorithm as OT.

This OT algorithm has several distinct advantages over the AT algorithm. It is simpler conceptually, since
there is very little chance for early termination of the search. It also allows the vertex level data structure to
be smaller proportional to the number of database nodes in the system, since each node involved in the
computation need only store vertex level marks for those vertices it owns.

Thus, we present Algorithm 4 which is the version of the algorithm which relies on the owner of the fringe
overlap vertex to terminate the search. It is essentially the same as Algorithm 1, with the exception that the
ExpandFringe function does not return an lpath value. The OT version uses the simple vertex level data
structure which allows full, immediate access to the vertex level information, at the cost of random-access
time.

4. Research or Other Technical Results
We carried out the experimental evaluation of the framework and the bidirectional, breadth-first search
algorithms on a 61-node Linux cluster. Each node of the cluster is equipped with dual 2.4 GHz Opteron
250 processors, 8 GB of RAM and two 250 GB SATA drives providing 500 GB of local storage via
software RAID0. The nodes are interconnected with switched gigabit Ethernet and Infiniband.

The tests were performed using the hub-based, hybrid partitioning during ingestion. To increase the
parallelism of disk access when accessing the high degree hub vertices, the hub vertex adjacency lists were
distributed to all of the database nodes. So the ownership of the hub vertices is shared among all of the
database nodes. The non-hub vertices (by far the lion’s share of the total vertex set) are partitioned with
modulo partitioning, for efficiency.

The experiments were carried out with four different scale-free graphs. A small subset of the Pubmed
graph (PubmedS) was used in the experiments carried out on one node, and the full Pubmed graph
(PubmedL) was used to run some of the experiments on 8 nodes. Next, we created two graphs by using the
method described in the preceding section, one with 40 billion directed edges (40B), and one with 120
billion directed edges (120B). PubmedS has 3,751,921 vertices, l while PubmedL has 26,676,177 vertices.
For the larger graphs, we simply created copies of PubmedL and added 20% random edges in such a way
as to preserve the scale-free properties of the original graph. With 61 copies of PubmedL in the 40 billion
edge graph, that makes 1,627,246,797 vertices. The 120 billion edge graph has 183 copies of PubmedL,
making 4,881,740,391 vertices.

Our framework supports multiple front-end ingestion nodes during the graph ingestion phase. Each
ingestion node reads the raw graph edge files, partitions the data according to a configurable declustering
method, and distributes the data to the database nodes. Upon receipt of the graph edges, the database node
stores them to the local grDB instance. The use of multiple ingestion points facilitates quick graph
ingestion and allows all of the database nodes to continuously store data without stalling waiting for data
from the ingestion node.

Our first set of experiments explored grDB’s disk block usage efficiency. Figure 2 shows these results. The
experiments were performed by ingesting PubmedS onto a single database node, and examining the grDB
file level usage. For this graph and database configuration, the file level with 32 K ‘slots’ for adjacency
data was only at 2.7% total usage. Since 32 K ‘slots’ used 256 KB of actual disk space, that represented a
lot of wasted space.

Figure 2 shows the effect of the addition of different file levels on the disk block occupancy. The baseline
file level sub-block sizes are 2, 4, 16, 256, 32 K, and 256 K. We performed 8 experiments, and tried
adding an extra level with block sizes varying from 32 to 16K. Beginning with the baseline 5 file levels,

Figure 2: Effect on the occupancy of the
grDB file levels with the addition of an
extra grDB file level

each of the bars represents one of these 8 configurations of the grDB file-system. File levels 2, 4, 16, and
256 K were not affected at all by any combination of extra file levels, and thus, on the x-axis, we only
present file utilization for sub-block sizes 256, 32 K and for the extra file level we added. For instance, the
addition of file level with sub-block size 128 caused the 256 sub-block file level utilization to spike up to
70%. However, the addition of that file level did nothing to reduce the abysmal 2.7% total usage for the 32
K sized sub-block file level. It is clear that some trial and error must be employed to find the file-level
configuration appropriate for each application.

Figure 3 shows the motivation behind partitioning the hub vertices’ adjacency list information amongst all
of the processors in the system. This experiment was conducted by inserting PubmedL into 8 database
nodes with various graph partition types. The chart series SD modulo and BD modulo represent
unidirectional and bidirectional breadth-first searches with using only modulo vertex partitioning. As seen
in the figure, the bidirectional search clearly outperforms unidirectional search. It is clear from the chart
that the hub vertex partitioning (named “BD hub”) has a positive effect on the search performance.

One of the major benefits of grDB in this type of external memory graph database is its flexibility in
writing vertex adjacency information to disk with a minimum of fragmentation overhead. The effect on
search performance of using grDB versus an optimally written contiguous graph adjacency list is shown in
Figure 4. The Compressed Adjacency List format represents the smallest on-disk representation possible if
the entire graph were known a-priori. During the search, there is no need to perform any more IO than
strictly necessary to retrieve vertices’ neighbors, and furthermore each access to adjacency list only
requires a single seek. In grDB, however, the adjacency list is partitioned into multiple sub-blocks which
can require multiple seeks and also incurs additional I/O. As is seen in the figure, however, both of the
schemes have similar execution time trends, and the performance difference between them is not large.
While the compressed adjacency list provides better execution time, it is not useful for the target
application where the graphs gets streaming updates. The cost of reshuffling the entire database every time
a new set of edges is added would be prohibitive for the compressed adjacency list database. By design,
grDB does not require any shuffling for incremental updates.

Figure 3: Performance of various partitioning
types on PubmedL

Figure 5 shows the results of running the bidirectional, breadth-first search kernel on the 40 billion and 120
billion edge graphs with 16 and 61 nodes, respectively. This figure shows that the performance of MSSG
scales well both with respect to graph size and number of nodes. More than 91% of the total searches
performed on these databases were complete within one minute.

5. Papers and Book Chapters Supported in Part by the Subcontract

Timothy D. R. Hartley, Umit V. Catalyurek and Andy Yoo, “Storing and Searching Massive
Scale-Free Graphs”, Poster in Supercomputing 2007 (SC’07), Reno, NV, 2007.

My advisee Timothy Hartley was awarded second place in the ACM-sponsored Student Research
Competition at SC’07 for the above work.

Figure 4: Comparison of optimal clustering vs grDB
for PubmedS

Figure 5: Search Performance on 40 billion and 120 billion
edge graphs

References

[1] J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional approach to external graph algorithms. Algorithmica, 32(3):437–458,

2002.

[2] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In S. Rajsbaum, editor, LATIN, volume 2286 of

Lecture Notes in Computer Science, pages 598–612. Springer, 2002.

[3] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric multiprocessors (smps). J. Parallel Distrib. Comput.,

65(9):994–1006, 2005.

[4] A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random networks: the topology of the world-wide web. Physica

A: Statistical Mechanics and its Applications, 281:69–77, June 2000.

[5] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for filtering very large scientific datasets on

archival storage systems. In Proceedings of the Eighth Goddard Conference on Mass Storage Systems and Technologies/17th IEEE

Symposium on Mass Storage Systems, pages 119–133. National Aeronautics and Space Administration, March 2000. NASA/CP

2000-209888.

[6] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz. Distributed processing of very large datasets with

DataCutter. Parallel Computing, 27(11):1457–1478, Oct. 2001.

[7] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On external memory graph traversal. In SODA, pages

859–860, 2000.

[8] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-memory graph algorithms. In

SODA ’95: Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, pages 139–149, Philadelphia, PA, USA,

1995. Society for Industrial and Applied Mathematics.

[9] T. D. R. Hartley, U. Catalyurek, F. Özgüner, A. Yoo, S. Kohn, and K. Henderson. MSSG: A framework for massive scale semantic

graphs. In Proceedings of 2006 IEEE International Conference on Cluster Computing. IEEE Computer Society, Sep 2006.

[10] M. T. Jones and P. Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput., 14(3):654–669, 1993.

[11] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and sparse matrix ordering library, version 3.1.

Technical report, Dept. Computer Science, University of Minnesota, 2003. http://www-users.cs.umn.edu/∼karypis/

metis/parmetis/download.html.

[12] T. Kolda and et. al. Data sciences technology for homeland security information management and knowledge discovery. Technical

Report UCRL-TR-208926, Lawrence Livermore National Laboratories, 2004. Report of the DHS Workshop on Data Sciences,

September 22-23, 2004.

[13] E. Konstantinova. Chemical hypergraph theory. Lecture Notes from Combinatorial & Computational Mathametics Center,

http://com2mac.postech.ac.kr/, 2000.

[14] U. Meyer and N. Zeh. I/o-efficient undirected shortest paths. In G. D. Battista and U. Zwick, editors, ESA, volume 2832 of Lecture

Notes in Computer Science, pages 434–445. Springer, 2003.

[15] R. Niewiadomski, J. N. Amaral, and R. C. Holte. A parallel external-memory frontier breadth-first traversal algorithm for clusters of

workstations. In ICPP, pages 531–538, 2006.

[16] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph searching. Algorithmica, 16(2):181–214, 1996.

[17] F. Olken. Graph data management for molecular biology. OMICS, 7(1):75–78, 2003.

[18] E. Ramadan, A. Tarafdar, and A. Pothen. A hypergraph model for the protein complex network in the yeast. In Proceedings of

186th International Parallel and Distributed Processing Symposium (IPDPS), Third Workshop on High Performance Computational

Biology, Santa Fe, NM, April 2004.

[19] W. Xu, L. Krishnamurthy, M. Tasan, G. Özsoyoglu, J. H. Nadeau, Z. M. Özsoyoglu, and G. Schaeffer. Pathways database system:

An integrated set of tools for biological pathways. In SAC, pages 96–102. ACM, 2003.

[20] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek. A scalable distributed parallel breadth-first

search algorithm on BlueGene/L. In Proceedings of SC2005 High Performance Computing, Networking, and Storage Conference,

2005. Gordon Bell Finalist.

[21] A. Yoo, S. Kohn, T. Brugger, I. Kaplan, and S. Pingry. Searching a massive semantic graph on netezza performance server. Technical

Report UCRL-PRES-226058, Lawrence Livermore National Laboratories, 2006.

